13 research outputs found

    LC–MS–MS Method for the Analysis of New Non-Imidazole Histamine H3 Receptor Antagonist 1-[3-(4-tert-Butylphenoxy)propyl]piperidine in Rat Serum—Application to Pharmacokinetic Studies

    Get PDF
    A sensitive and specific liquid chromatography electrospray ionisation–tandem mass spectrometry method for determination of new non-imidazole histamine H3 receptor antagonist 1-[3-(4-tert-butylphenoxy)propyl]piperidine (DL76) in rat serum has been developed and validated. Chromatography was performed on a XBridge™ C18 analytical column (2.1 × 30 mm, 3.5 µm, Waters, Ireland) with gradient elution using a mobile phase containing acetonitrile and water with an addition of 0.1% of formic acid. Detection was achieved by an Applied Biosystems MDS Sciex (Concord, Ontario, Canada) API 2000 triple quadrupole mass spectrometer. Electrospray ionization (ESI) was used for ion production. The limit of detection in the SRM mode was found to be 0.5 ng mL−1. The limit of quantification was 1 ng mL−1. The precision and accuracy for both intra- and inter-day determination of DL76 ranged from 1.65 to 15.09% and from 88.74 to 113.43%. The results of this analytical method validation allow to carry out pharmacokinetic studies in rats. The method was used for the pilot study of the pharmacokinetic behavior of DL76 in rats after intravenous administration

    In vitro and in silico ADME-Tox profiling and safety significance of multifunctional monoamine oxidase inhibitors targeting neurodegenerative deseases

    Get PDF
    Herein we report in vitro metabolic stability in human liver microsomes (HLMs), interactions with cytochrome P450 isoenzymes (CYP3A4, CYP2D6, and CYP2C9), and cytotoxicity analyses on HEK-293, HepG2, Huh7, and WTIIB cell lines of our most recent multitarget directed ligands PF9601N, ASS234, and contilisant. Based on these results, we conclude that (1) PF9601N and contilisant are metabolically stable in the HLM assay, in contrast to the very unstable ASS234; (2) CYP3A4 activity was decreased by PF9601N at all the tested concentrations and by ASS234 and contilisant only at the highest concentration; CYP2D6 activity was reduced by ASS234 at 1, 10, and 25 μM and by PF9601N at 10 and 25 μM, whereas contilisant increased its activity at the same concentrations; CYP2C9 was inhibited by the three compounds; (3) contilisant did not affect cell viability in the widest range of concentrations: up to 10 μM on HEK-293 cells, up to 30 μM on Huh7 cells, up to 50 μM on HepG2 cells, and up to 30 or 100 μM on WTIIB cells. Based on these results, we selected contilisant as a metabolically stable and nontoxic lead compound for further studies in Alzheimer's disease therapy.This study received financial support from the National Science Centre Poland (Grant No. 2016/23/D/NZ7/01328). J.M.-C. thanks AEI (Government of Spain) for grants PDI- 2019-105813RB-C21 and SAF2015-65586-R. J.M.-C. and F.L.- M. thank UCJC (Grants UCJC 2020-33 UCJC 2020-03) for support

    Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors

    Get PDF
    Bacterial multidrug resistance is becoming a growing problem for public health, due to the development and spreading of bacterial strains resistant to antimicrobials. In this study, the antibacterial and multidrug resistance reversing activity of a series of seleno-carbonyl compounds has been evaluated. The effects of eleven selenocompounds on bacterial growth were evaluated in Staphylococcus aureus, methicillin resistant S. aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Chlamydia trachomatis D. The combination effect of compounds with antibiotics was examined by the minimum inhibitory concentration reduction assay. Their efflux pump (EP) inhibitory properties were assessed using real-time fluorimetry. Relative expressions of EP and quorum-sensing genes were studied by quantitative PCR. Results showed that a methylketone selenoester had remarkable antibacterial activity against Gram-positive bacteria and potentiated the activity of oxacillin in MRSA. Most of the selenocompounds showed significant anti-chlamydial effects. The selenoanhydride and the diselenodiester were active inhibitors of the AcrAB-TolC system. Based on these results it can be concluded that this group of selenocompounds can be attractive potential antibacterials and EP inhibitors. The discovery of new derivatives with a significant antibacterial activity as novel selenocompounds, is of high impact in the fight against resistant pathogen

    Probing Substituents in the 1- and 3-Position: Tetrahydropyrazino-Annelated Water-Soluble Xanthine Derivatives as Multi-Target Drugs With Potent Adenosine Receptor Antagonistic Activity

    Get PDF
    Tetrahydropyrazino-annelated theophylline (1,3-dimethylxanthine) derivatives have previously been shown to display increased water-solubility as compared to the parent xanthines due to their basic character. In the present study, we modified this promising scaffold by replacing the 1,3-dimethyl residues by a variety of alkyl groups including combinations of different substituents in both positions. Substituted benzyl or phenethyl residues were attached to the N8 of the resulting 1,3-dialkyl-tetrahydropyrazino[2,1-f ]purinediones with the aim to obtain multi-target drugs that block human A1 and A2A adenosine receptors (ARs) and monoaminoxidase B (MAO-B). 1,3-Diethyl-substituted derivatives showed high affinity for A1 ARs, e.g., 15d (PSB-18339, 8-m-bromobenzyl-substituted) displayed a Ki value of 13.6 nM combined with high selectivity. 1-Ethyl-3-propargyl-substituted derivatives exhibited increased A2A AR affinity. The 8-phenethyl derivative 20h was selective for the A2A AR (Ki 149 nM), while the corresponding 8-benzyl-substituted compound 20e (PSB-1869) blocked A1 and A2A ARs with equal potency (Ki A1, 180 nM; A2A, 282 nM). The 1-ethyl-3-methyl-substituted derivative 16a (PSB-18405) bearing a m,p-dichlorobenzyl residue at N8 blocked all three targets, A1 ARs (Ki 396 nM), A2A ARs (Ki 1,620 nM), and MAO-B (IC50 106 nM) with high selectivity vs. the other subtypes (A2B and A3 ARs, MAO-A), and can thus be considered as a multi-target drug. Our findings were rationalized by molecular docking studies based on previously published X-ray structures of the protein targets. The new drugs have potential for the treatment of neurodegenerative diseases, in particular Parkinson's disease

    Characterization of non-olfactory GPCRs in human sperm with a focus on GPR18

    Get PDF
    G protein-coupled receptors (GPCRs) transduce external chemical cues into intracellular signals and are involved in a plethora of physiological processes, but knowledge regarding the function of these receptors in spermatozoa is limited. In the present study, we performed RNA-Seq and analyzed the expression of the all GPCRs except olfactory receptors in human spermatozoa. We revealed the expression of up to 223 different GPCR transcripts in human spermatozoa (FPKM > 0.1) and identified GPR18, a newly described cannabinoid receptor, together with GPR137 and GPR135, as one of the three most highly expressed GPCRs. To date, the expression of GPR18 was completely unknown in human spermatozoa. We confirmed GPR18 expression using RT-PCR and immuncytochemistry experiments and localized the GPR18 protein in the midpiece of human spermatozoa. Stimulation of human spermatozoa with the GPR18 ligand N-arachidonoylglycine induced the phosphorylation of 12 protein kinases, some of them are for example known to be involved in the acrosome reaction. In line with this, N-arachidonoylglycine affected the cytoskeleton by changing levels of F-actin and inducing the acrosome reaction in human spermatozoa in a concentration-dependent manner. Our results indicate that GPR18 might be involved in physiological processes of human spermatozoa, suggesting GPR18 to be a potential player in sperm physiology

    Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors

    No full text
    Bacterial multidrug resistance is becoming a growing problem for public health, due to the development and spreading of bacterial strains resistant to antimicrobials. In this study, the antibacterial and multidrug resistance reversing activity of a series of seleno-carbonyl compounds has been evaluated. The effects of eleven selenocompounds on bacterial growth were evaluated in Staphylococcus aureus, methicillin resistant S. aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Chlamydia trachomatis D. The combination effect of compounds with antibiotics was examined by the minimum inhibitory concentration reduction assay. Their efflux pump (EP) inhibitory properties were assessed using real-time fluorimetry. Relative expressions of EP and quorum-sensing genes were studied by quantitative PCR. Results showed that a methylketone selenoester had remarkable antibacterial activity against Gram-positive bacteria and potentiated the activity of oxacillin in MRSA. Most of the selenocompounds showed significant anti-chlamydial effects. The selenoanhydride and the diselenodiester were active inhibitors of the AcrAB-TolC system. Based on these results it can be concluded that this group of selenocompounds can be attractive potential antibacterials and EP inhibitors. The discovery of new derivatives with a significant antibacterial activity as novel selenocompounds, is of high impact in the fight against resistant pathogen
    corecore