64 research outputs found

    Preliminary genetic study on species from genus Deschampsia from Antarctic(King George I.) and Arctic(Spitsbergen)

    Get PDF
    The aim of this study was to analyze the variation among three polar species Deschampsia antarctica, Deschampsia alpina and Deschampsia brevifolia. Genomic DNA samples were extracted from individual plants and analyzed by AFLP technique. More than 322 polymorphic AFLP bands that allowed determination of genetic relationships among three Deschampsia species were obtained. The present investigation reveals that D. antarctica was more similar to a species from the Arctic(D. brevifolia) than was D. alpina. Also, the genetic diversity within population of D. antarctica was greater than those within the analyzed populations of D. brevifolia and D. alpina

    What affects the probability of biological invasions in Antarctica? Using an expanded conceptual framework to anticipate the risk of alien species expansion

    Get PDF
    Successful alien species invasion depends on many factors studied mostly in post invasion habitats, and subsequently summarized in frameworks tailored to describe the studied invasion. We used an existing expanded framework with three groups of contributing factors: habitat invisibility, system context and species invasiveness, to analyze the probability of alien species invasions in terrestrial communities of Maritime Antarctic in the future. We focused on the first two factor groups. We tested if the expanded framework could be used under a different scenario. We chose Point Thomas Oasis on King George Island to perform our analysis. Strong geographical barrier, low potential bioclimatic suitability and resource availability associated with habitat invasibility significantly reduce the likelihood of biological invasion in Antarctica. An almost full enemy release (low pressure of consumers), the high patchiness of the habitat, and the prevalence of open gaps also associated with habitat invasibility increase the possibility of invasion. The dynamics of functional connectivity, propagule pressure and spatio-temporal patterns of propagule arrival associated with human activity and climate change belonging to the system context contribute to an increase in the threat of invasions. Due to the still low land transport activity migration pathways are limited and will reduce the spread of alien terrestrial organisms by land. An effective way of preventing invasions in Antarctica seems to lie in reducing propagule pressure and eliminating alien populations as early as possible. The expanded conceptual framework opens up wider possibilities in analyzing invasions taking place in different systems and with multiple taxa

    Mapping Glacier Forelands Based on UAV BVLOS Operation in Antarctica

    Get PDF
    The aim of this article is to show geomorphological mapping of remote Antarctic locations usingimagestakenbyafixed-wingunmannedaerialvehicle(UAV)duringtheBeyondVisualLineof Sight (BVLOS) operations. We mapped landform assemblages developed in forelands of Ecology Glacier (EGF), Sphinx Glacier (SGF) and Baranowski Glacier (BGF) in Antarctic Specially Protected Area No. 128 (ASPA 128) on King George Island (South Shetland Islands) and inferred about glacial dynamics. The orthophoto and digital elevation model allowed for geomorphological mapping of glacial forelands, including (i) glacial depositional landforms, (ii) fluvial and fluvioglacial landforms, (iii) littoral and lacustrine landforms, (iv) bodies of water, and (v) other. The largest area is occupied by ground moraine and glacial lagoons on EGF and BGF. The most profound features of EGF are the largelatero-frontalmoraineridgesfromLittleIceAgeandthefirsthalfofthe20thcentury. Largeareas of ground moraine, frequently fluted and marked with large recessional moraine ridges, dominate on SGF. A significant percentage of bedrock outcrops and end moraine complexes characterize BGF. The landform assemblages are typical for discontinuous fast ice flow of tidewater glaciers over a deformable bed. It is inferred that ice flow velocity decreased as a result of recession from the sea coast, resulting in a significant decrease in the length of ice cliffs and decrease in calving rate. Image acquisition during the fixed-wing UAV BVLOS operation proved to be a very robust technique in harsh polar conditions of King George Island

    An analysis of fungal propagules transported to the Henryk Arctowski Antarctic Station

    Get PDF
    During three austral summer seasons, dust and soil from clothes, boots and equipment of members of scientific expeditions and tourists visiting the Polish Antarctic Station Henryk Arctowski were collected and analysed for the presence of fungal propagules. Of a total of 60 samples, 554 colonies of fungi belonging to 19 genera were identified. Colonies of the genus Cladosporium, Penicillium and non−sporulating fungus (Mycelia sterilia) dominated in the examined samples. The microbiological assessment of air for the presence of fungi was also conducted at two points in the station building and two others outside the station. A total of 175 fungal colonies belonging to six genera were isolated. Colonies of the genus Penicillium were the commonest in the air samples. The potential epidemiological consequences for indigenous species as a result of unintentional transport of fungal propagules to the Antarctic biome are discussed in the light of rapid climate change in some parts of the Antarctic and adaptation of fungi to extreme conditions

    First step to eradication of Poa annua L. from Point Thomas Oasis (King George Island, South Shetlands, Antarctica)

    Get PDF
    Poa annua, an alien species reported from the Antarctic continent and many Antarctic and sub-Antarctic islands, was accidentally introduced in the vicinity of the Polish Antarctic Station H. Arctowski. Recently the species has been found entering native plant communities. In almost 30 years it dispersed over 250 m from the site it was first observed and can therefore be considered invasive. We report the first steps to eradicate the species following the initial research to quantify the biology, ecology and genetics of the species. After detailed mapping of all 1439 tussocks located in the Arctowski Station area we removed 314 tussocks closest to a moss carpet formation (native plant community of high conservation value). All of the 49 tussocks growing in the Ecology Glacier forefield were removed. It is the biggest alien plant eradication act conducted so far in Antarctica. We plan to continue the eradication process and monitor the eradicated sites. This will provide valuable information on impacts and issuesrelated to removal of alien species in the maritime Antarctic and will help in informing future decisions on management of other plant invasions in the region. Given the increasing human traffic to the Antarctic and the associated risks of invasion our results will be important not only for Arctowski but also for the whole Antarctic region

    Retrotransposon-based genetic variation of Poa annua populations from contrasting climate conditions

    Get PDF
    Background Poa annua L. is an example of a plant characterized by abundant, worldwide distribution from polar to equatorial regions. Due to its high plasticity and extraordinary expansiveness, P. annua is considered an invasive species capable of occupying and surviving in a wide range of habitats including pioneer zones, areas intensively transformed by human activities, remote subarctic meadows and even the Antarctic Peninsula region. Methods In the present study, we evaluated the utility of inter-primer binding site (iPBS) markers for assessing the genetic variation of P. annua populations representing contrasting environments from the worldwide range of this species. The electrophoretic patterns of polymerase chain reaction products obtained for each individual were used to estimate the genetic diversity and differentiation between populations. Results iPBS genotyping revealed a pattern of genetic variation differentiating the six studied P. annua populations characterized by their different climatic conditions. According to the analysis of molecular variance, the greatest genetic variation was recorded among populations, whereas 41.75% was observed between individuals within populations. The results of principal coordinates analysis (PCoA) and model-based clustering analysis showed a clear subdivision of analyzed populations. According to PCoA, populations from Siberia and the Kola Peninsula were the most different from each other and showed the lowest genetic variability. The application of STRUCTURE software confirmed the unique character of the population from the Kola Peninsula. Discussion The lowest variability of the Siberia population suggested that it was subjected to genetic drift. However, although demographic expansion was indicated by negative values of Fu’s FS statistic and analysis of mismatch distribution, it was not followed by significant traces of a bottleneck or a founder effect. For the Antarctic population, the observed level of genetic variation was surprisingly high, despite the observed significant traces of bottleneck/founder effect following demographic expansion, and was similar to that observed in populations from Poland and the Balkans. For the Antarctic population, the multiple introduction events from different sources are considered to be responsible for such an observation. Moreover, the results of STRUCTURE and PCoA showed that the P. annua from Antarctica has the highest genetic similarity to populations from Europe. Conclusions The observed polymorphism should be considered as a consequence of the joint influence of external abiotic stress and the selection process. Environmental changes, due to their ability to induce transposon activation, lead to the acceleration of evolutionary processes through the production of genetic variability

    Seed germination and invasion success of Poa annua L. in Antarctica

    Get PDF
    One of the first steps to successful invasion of plant species that reproduce sexually is seed germination, which may be highly influenced by climatic conditions. We studied Poa annua, a cosmopolitan species found across all climatic zones and the only alien species that has successfully colonized the Antarctic. Our research questions were: (i) if harsh polar conditions restrict seed germination of P. annua and (ii) if the germination capacity of the Antarctic population of the species is due to high germination aptitude in the source population. We compared germination of seeds collected from eight populations around the world (maritime Antarctica, S Chile, W Argentina and E Argentina, NE USA, SW Croatia, C Poland and S Poland). We followed germination of seeds collected in the field and acquired from plants cultivated under unified optimal conditions. We found significant differences between populations in germination characteristics of seeds collected in the field. These could be associated with seed ripening in different locations. Seeds obtained under favorable conditions differed in stratification requirements. The germination potential of the Antarctic population is lowered by unfavorable polar conditions impacting seed maturation. Thus, the species’ invasion in the Antarctic seems highly restricted by the harsh environment. Environmental unsuitability may restrict invasions of other species in the same way potentially. However, this environmental barrier protecting Antarctica from invasions may be broken under a climate warming scenario

    Bacterial Communities Associated with Poa annua Roots in Central European (Poland) and Antarctic Settings (King George Island)

    Get PDF
    Abstract: Poa annua (annual bluegrass) is one of the most ubiquitous grass species in the world. In isolated regions of maritime Antarctica, it has become an invasive organism threatening native tundra communities. In this study, we have explored and compared the rhizosphere and rootendosphere dwelling microbial community of P. annua specimens of maritime Antarctic and Central European origin in terms of bacterial phylogenetic diversity and microbial metabolic activity with a geochemical soil background. Our results show that the rhizospheric bacterial community was unique for each sampling site, yet the endosphere communities were similar to each other. However, key plant-associated bacterial taxa such as the Rhizobiaceae family were poorly represented in Antarctic samples, probably due to high salinity and heavy metal concentrations in the soil. Metabolic activity in the Antarctic material was considerably lower than in Central European samples. Antarctic root endosphere showed unusually high numbers of certain opportunistic bacterial groups, which proliferated due to low competition conditions. Thirteen bacterial families were recognized in this study to form a core microbiome of the P. annua root endosphere. The most numerous were the Flavobacteriaceae, suspected to be major contributors to the ecological success of annual bluegrass, especially in harsh, Antarctic conditions

    Rapid environmental changes in the western antarctic peninsula region due to climate change and human activity

    Get PDF
    The Antarctic and the Southern Ocean are a critically important part of the Earth system. The climatic, physical, and biological properties of this region are closely linked to other parts of the global environment. 200 years of direct human impact, recent climate amelioration and changes in the main sources and circulation of biogenic compounds as well as accumulation of industrial contaminants have significantly affected the whole ecosystem. Particularly sensitive is the region of the Western Antarctic Peninsula, which is considered to be one of the hot spots of the Earth. In this paper, we review recent literature and compare it with historical data to estimate and predict the consequences of this process. The Antarctic ecosystems can no longer be regarded as pristine. Global as well as local human influence has transgressed the barriers isolating that continent from the rest of the World, causing previously observed changes to accelerate
    corecore