2,081 research outputs found
An electronic model for self-assembled hybrid organic/perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling
Based on density functional theory, the electronic and optical properties of
hybrid organic/perovskite crystals are thoroughly investigated. We consider the
mono-crystalline 4FPEPI as material model and demonstrate the optical process
is governed by three active Bloch states at the {\Gamma} point of the reduced
Brillouin zone with a reverse ordering compared to tetrahedrally bonded
semiconductors. Giant spin-orbit coupling effects and optical activities are
subsequently inferred from symmetry analysis.Comment: 17 pages, 6 figure
Analysis of a single-mode waveguide at sub-terahertz frequencies as a communication channel
We study experimentally the transmission of an electromagnetic waveguide in the frequency range from 160 to 300 GHz. Photo-mixing is used to excite and detect the fundamental TE10 mode in a rectangular waveguide with two orders-of-magnitude lower impedance. The large impedance mismatch leads to a strong frequency dependence of the transmission, which we measure with a high-dynamic range of up to 80 dB and with high frequency-resolution. The modified transmission function is directly related to the information rate of the waveguide, which we estimate to be about 1 bit per photon. We suggest that the results are applicable to a Josephson junction employed as a single-photon source and coupled to a superconducting waveguide to achieve a simple on-demand narrow-bandwidth free-space number-state quantum channel
Neutral-ionic phase transition : a thorough ab-initio study of TTF-CA
The prototype compound for the neutral-ionic phase transition, namely TTF-CA,
is theoretically investigated by first-principles density functional theory
calculations. The study is based on three neutron diffraction structures
collected at 40, 90 and 300 K (Le Cointe et al., Phys. Rev. B 51, 3374 (1995)).
By means of a topological analysis of the total charge densities, we provide a
very precise picture of intra and inter-chain interactions. Moreover, our
calculations reveal that the thermal lattice contraction reduces the indirect
band gap of this organic semi-conductor in the neutral phase, and nearly closes
it in the vicinity of the transition temperature. A possible mechanism of the
neutral-ionic phase transition is discussed. The charge transfer from TTF to CA
is also derived by using three different technics.Comment: 11 pages, 9 figures, 7 table
Modulated Floquet Topological Insulators
Floquet topological insulators are topological phases of matter generated by
the application of time-periodic perturbations on otherwise conventional
insulators. We demonstrate that spatial variations in the time-periodic
potential lead to localized quasi-stationary states in two-dimensional systems.
These states include one-dimensional interface modes at the nodes of the
external potential, and fractionalized excitations at vortices of the external
potential. We also propose a setup by which light can induce currents in these
systems. We explain these results by showing a close analogy to px+ipy
superconductors
Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells.
Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation
Effect of a lipid-rich fraction from boiled coffee on serum cholesterol
Scandinavian-style boiled coffee, which raises serum cholesterol, was found to contain more lipid material than drip filter coffee, which does not. Ten volunteers consumed a lipid-enriched fraction from boiled coffee for six weeks: the supplement provided 77 g of water, 1?3 g of lipid, and 1?6 g of other solids per day. Serum cholesterol rose in every subject; the mean rise was 0?74 mmol/l after three weeks (range - 0?09 to 1?48 mmol/l) and 1 ?06 SD 0?37 mmol/l or 23% after six weeks (range 0?48 to 1?52 mmol/l). The increase was mainly due to low-density-lipoprotein cholesterol, which rose by 29%, but very-low-density lipoprotein cholesterol was also raised, as evidenced by a 55% rise in triglycerides. High-density-lipoprotein cholesterol was unchanged. After supplementation had ended, lipid levels returned to baseline. Boiled coffee thus contains a lipid that powerfully raises serum cholesterol
Effects of cafestol and kahweol from coffee grounds on serum lipids and serum liver enzymes in humans
The diterpenes cafestol and kahweol are present in unfiltered coffee in oil droplets and floating fines. They elevate serum cholesterol and alanine aminotransferase (ALT). We measured fines in coffee brews, and examined diterpene availability from spent grounds in healthy volunteers. Turkish or Scandinavian boiled coffee contained 2–5 g fines/L and French press coffee contained 1.5 g fines/L. An intake of 8 g fine grounds/d for 3 wk increased cholesterol by 0.65 mmol/L (95% CI 0.41–0.89 mmol/L) and ALT by 18 U/L (95% CI 4–32 U/L) relative to control subjects (n = 7/group). In a crossover study (n = 15), mean serum cholesterol was 4.9 mmol/L after consumption of both fine and coarse grounds for 10 d (P = 0.43). Serum ALT activities were 29 U/L on fine and 21 U/L on coarse grounds (P = 0.02). Floating fines could contribute substantially to the hyperlipidemic and ALT-elevating effect of unfiltered coffee. Diterpene measurements in coffee brews should include the contribution of fines
The cholesterol-raising diterpenes from coffee beans increase serum lipid transfer protein activity levels in humans
Cafestol and kahweol–diterpenes present in unfiltered coffee— strongly raise serum VLDL and LDL cholesterol and slightly reduce HDL cholesterol in humans. The mechanism of action is unknown. We determined whether the coffee diterpenes may affect lipoprotein metabolism via effects on lipid transfer proteins and lecithin:cholesterol acyltransferase in a randomized, double-blind cross-over study with 10 healthy male volunteers. Either cafestol (61–64 mg/day) or a mixture of cafestol (60 mg/day) and kahweol (48–54 mg/day) was given for 28 days. Serum activity levels of cholesterylester transfer protein, phospholipid transfer protein and lecithin:cholesterol acyltransferase were measured using exogenous substrate assays. Relative to baseline values, cafestol raised the mean (±S.D.) activity of cholesterylester transfer protein by 18±12% and of phospholipid transfer protein by 21±14% (both P<0.001). Relative to cafestol alone, kahweol had no significant additional effects. Lecithin:cholesterol acyltransferase activity was reduced by 11±12% by cafestol plus kahweol (P=0.02). It is concluded that the effects of coffee diterpenes on plasma lipoproteins may be connected with changes in serum activity levels of lipid transfer proteins
- …
