12 research outputs found

    Structural Basis for a Broad But Selective Ligand Spectrum of a Mouse Olfactory Receptor: Mapping the Odorant-Binding Site

    Get PDF
    The olfactory receptor (OR) superfamily provides a basis for the remarkable ability to recognize and discriminate a large number of odorants. In mice, the superfamily includes āˆ¼1000 members, and they recognize overlapping sets of odorants with distinct affinities and specificities. To address the molecular basis of odor discrimination by the mammalian OR superfamily, we performed functional analysis on a series of site-directed mutants and performed ligand docking simulation studies to define the odorant-binding site of a mouse OR. Our results indicate that several amino acids in the transmembrane domains formed a ligand-binding pocket. Although other G-protein-coupled receptors (GPCRs) recognize biogenic ligands mainly with ionic or hydrogen bonding interactions, ORs recognize odorants mostly via hydrophobic and van der Waals interactions. This accounts for the broad but selective binding by ORs as well as their relatively low ligand-binding affinities. Furthermore, we succeeded in rational receptor design, inserting point mutations in the odorant-binding site that resulted in predicted changes in ligand specificity and antagonist activity. This ability to rationally design the receptor validated the binding site structure that was deduced with our mutational and ligand docking studies. Such broad and specific sensitivity suggests an evolutionary process during which mutations in the active site led to an enormous number of ORs with a wide range of ligand specificity. The current study reveals the molecular environment of the odorant-binding site, and it further advances the understanding of GPCR pharmacology

    Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of Receptor-Defined Glomeruli

    Get PDF
    Odorant identity is represented in the olfactory bulb (OB) by the glomerular activity pattern, which reflects a combination of activated odorant receptors (ORs) in the olfactory epithelium. To elucidate this neuronal circuit at the molecular level, we established a functional OR identification strategy based on glomerular activity by combining in vivo Ca^(2+) imaging, retrograde dye labeling, and single-cell RT-PCR. Spatial and functional mapping of OR-defined glomeruli revealed that the glomerular positional relationship varied considerably between individual animals, resulting in different OR maps in the OB. Notably, OR-defined glomeruli exhibited different ligand spectra and far higher sensitivity compared to the in vitro pharmacological properties of corresponding ORs. Moreover, we found that the olfactory mucus was an important factor in the regulation of in vivo odorant responsiveness. Our results provide a methodology to examine in vivo glomerular responses at the receptor level and further help address the long-standing issues of olfactory sensitivity and specificity under physiological conditions

    Ligand Screening of Olfactory Receptors

    No full text
    [no abstract

    The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control.

    Get PDF
    Chromatin remodeling is a prerequisite for most nuclear functions, including transcription, silencing, and DNA replication. Accumulating evidence shows that many physiological processes require highly sophisticated events of chromatin remodeling. Recent findings have linked cellular metabolism, epigenetic state, and the circadian clock. The control of a large variety of neuronal, behavioral, and physiological responses follows diurnal rhythms. This is possible through a transcriptional regulatory network that governs a significant portion of the genome. The harmonic oscillation of gene expression is paralleled by critical events of chromatin remodeling that appear to provide specificity and plasticity in circadian regulation. Accumulating evidence shows that the circadian epigenome appears to share intimate links with cellular metabolic processes. These notions indicate that the circadian epigenome might integrate tissue specificity within biological pacemakers, bridging systems physiology to metabolic control. This review highlights several advances related to the circadian epigenome, the contribution of NAD+ as a critical signaling metabolite, and its effects on epigenetic state, followed by more recent reports on circadian metabolomics analyses

    PER2 controls lipid metabolism by direct regulation of PPARĪ³.

    Get PDF
    Accumulating evidence highlights intriguing interplays between circadian and metabolic pathways. We show that PER2 directly and specifically represses PPARĪ³, a nuclear receptor critical in adipogenesis, insulin sensitivity, and inflammatory response. PER2-deficient mice display altered lipid metabolism with drastic reduction of total triacylglycerol and nonesterified fatty acids. PER2 exerts its inhibitory function by blocking PPARĪ³ recruitment to target promoters and thereby transcriptional activation. Whole-genome microarray profiling demonstrates that PER2 dictates the specificity of PPARĪ³ transcriptional activity. Indeed, lack of PER2 results in enhanced adipocyte differentiation of cultured fibroblasts. PER2 targets S112 in PPARĪ³, a residue whose mutation has been associated with altered lipid metabolism. Lipidomic profiling demonstrates that PER2 is necessary for normal lipid metabolism in white adipocyte tissue. Our findings support a scenario in which PER2 controls the proadipogenic activity of PPARĪ³ by operating as its natural modulator, thereby revealing potential avenues of pharmacological and therapeutic intervention

    NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1.

    No full text
    The circadian clock controls the transcription of hundreds of genes through specific chromatin-remodeling events. The histone methyltransferase mixed-lineage leukemia 1 (MLL1) coordinates recruitment of CLOCK-BMAL1 activator complexes to chromatin, an event associated with cyclic trimethylation of histone H3 Lys4 (H3K4) at circadian promoters. Remarkably, in mouse liver circadian H3K4 trimethylation is modulated by SIRT1, an NAD(+)-dependent deacetylase involved in clock control. We show that mammalian MLL1 is acetylated at two conserved residues, K1130 and K1133. Notably, MLL1 acetylation is cyclic, controlled by the clock and by SIRT1, and it affects the methyltransferase activity of MLL1. Moreover, H3K4 methylation at clock-controlled-gene promoters is influenced by pharmacological or genetic inactivation of SIRT1. Finally, levels of MLL1 acetylation and H3K4 trimethylation at circadian gene promoters depend on NAD(+) circadian levels. These findings reveal a previously unappreciated regulatory pathway between energy metabolism and histone methylation
    corecore