41 research outputs found

    Identification, release and olfactory detection of bile salts in the intestinal fluid of the Senegalese sole (Solea senegalensis)

    Get PDF
    Olfactory sensitivity to bile salts is wide-spread in teleosts; however, which bile salts are released in suYcient quantities to be detected is unclear. The current study identiWed bile salts in the intestinal and bile Xuids of Solea senegalensis by mass spectrometry–liquid chromatography and assessed their olfactory potency by the electro-olfactogram

    Towards more efficient longline fisheries: fish feeding behaviour, bait characteristics and development of alternative baits

    Get PDF

    Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure

    Full text link

    Transfer and Transcriptomic Profiling in Liver and Brain of European Eels ( Anguilla anguilla ) After Diet‐borne Exposure to Gold Nanoparticles

    No full text
    A nanometric revolution is underway, promising technical innovations in a wide range of applications and leading to a potential boost in environmental discharges. The propensity of nanoparticles (NPs) to be transferred throughout trophic chains and to generate toxicity was mainly assessed in primary consumers, whereas a lack of knowledge for higher trophic levels persists. The present study focused on a predatory fish, the European eel (Anguilla anguilla) exposed to gold NPs (AuNPs; 10 nm, polyethylene glycol–coated) for 21 d at 3 concentration levels in food: 0 (NP0), 1 (NP1), and 10 (NP10) mg Au kg−1. Transfer was assessed by Au quantification in eel tissues, and transcriptomic responses in the liver and brain were revealed by a high‐throughput RNA‐sequencing approach. Eels fed at NP10 presented an erratic feeding behavior, whereas Au quantification only indicated transfer to intestine and kidney of NP1‐exposed eels. Sequencing of RNA was performed in NP0 and NP1 eels. A total of 258 genes and 156 genes were significantly differentially transcribed in response to AuNP trophic exposure in the liver and brain, respectively. Enrichment analysis highlighted modifications in the immune system–related processes in the liver. In addition, results pointed out a shared response of both organs regarding 13 genes, most of them being involved in immune functions. This finding may shed light on the mode of action and toxicity of AuNPs in fish.Approches Ă  diffĂ©rentes Ă©chelles pour caractĂ©riser les interactions cellulaires, le transfert trophique et les impacts toxiques de nanoparticules mĂ©talliques chez les organismes aquatiquesCOntinental To coastal Ecosystems: evolution, adaptability and governanc
    corecore