1,472 research outputs found
Identification problems of muon and electron events in the Super-Kamiokande detector
In the measurement of atmospheric nu_e and nu_mu fluxes, the calculations of
the Super Kamiokande group for the distinction between muon-like and
electronlike events observed in the water Cerenkov detector have initially
assumed a misidentification probability of less than 1 % and later 2 % for the
sub-GeV range. In the multi-GeV range, they compared only the observed
behaviors of ring patterns of muon and electron events, and claimed a 3 %
mis-identification. However, the expressions and the calculation method do not
include the fluctuation properties due to the stochastic nature of the
processes which determine the expected number of photoelectrons (p.e.) produced
by muons and electrons. Our full Monte Carlo (MC) simulations including the
fluctuations of photoelectron production show that the total mis-identification
rate for electrons and muons should be larger than or equal to 20 % for sub-GeV
region. Even in the multi-GeV region we expect a mis-identification rate of
several % based on our MC simulations taking into account the ring patterns.
The mis-identified events are mostly of muonic origin.Comment: 17 pages, 12 figure
Vacuum-packaged micro fuel reformer for high thermal efficiency and low package temperature
MEMS 2008, Tucson, AZ, USA, January 13-17, 200
The Carnot Cycle for Small Systems: Irreversibility and the Cost of Operations
We employ the recently developed framework of the energetics of stochastic
processes (called `stochastic energetics'), to re-analyze the Carnot cycle in
detail, taking account of fluctuations, without taking the thermodynamic limit.
We find that both processes of connection to and disconnection from heat
baths and adiabatic processes that cause distortion of the energy distribution
are sources of inevitable irreversibility within the cycle. Also, the so-called
null-recurrence property of the cumulative efficiency of energy conversion over
many cycles and the irreversible property of isolated, purely mechanical
processes under external `macroscopic' operations are discussed in relation to
the impossibility of a perpetual machine, or Maxwell's demon.Comment: 11 pages with 3 figures. Resubmitted to Physical Review E. Many
paragraphs have been modifie
Adiabatic invariance with first integrals of motion
The construction of a microthermodynamic formalism for isolated systems based
on the concept of adiabatic invariance is an old but seldom appreciated effort
in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33,
225 (1910)]. An apparently independent extension of such formalism for systems
bearing additional first integrals of motion was recently proposed by Hans H.
Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic
invariance even in such singular cases. After some remarks in connection with
the formalism pioneered by Hertz, it will be suggested that such an extension
can incidentally explain the success of a dynamical method for computing the
entropy of classical interacting fluids, at least in some potential
applications where the presence of additional first integrals cannot be
ignored.Comment: 2 pages, no figures (REVTeX 4
Mortality in a cohort of people living with HIV in rural Tanzania, accounting for unseen mortality among those lost to follow-up
Mortality assessment in cohorts with high lost to follow-up (LTFU) is challenging in settings with limited civil registration systems. We aimed to assess mortality in a clinical cohort (KIULARCO) of HIV-infected persons in rural Tanzania, accounting for unseen deaths among participants LTFU. We included adults enrolled in 2005-2015 and traced a non-random sample of those LTFU. We estimated mortality using Kaplan-Meier methods with: A) routinely-captured data; B) crudely incorporating tracing data; C) weighting using tracing data to crudely correct for unobserved deaths among participants LTFU; and D) weighting using tracing data accounting for participant characteristics. We investigated associated factors using proportional hazards models. Among 7460 adults, 646 (9%) died, 883 (12%) transferred clinics, and 2911 (39%) were LTFU. Of 2010 (69%) traced participants, 325 (16%) were found: 131 (40%) died and 130 (40%) transferred. Five-year mortality estimates were A) 13.1%; B) 16.2%; C) 36.8%; D) 35.1%. Higher mortality was associated with male sex, referral as hospital in-patient, living close to the clinic, lower body mass index, more advanced WHO stage, lower CD4 count, and less time since antiretroviral therapy initiation. Adjusting for unseen deaths among participants LTFU approximately doubled the five-year mortality estimates. Our approach is applicable to other cohorts adopting targeted tracing
COMET 169P/NEAT(=2002 EX 12 ): THE PARENT BODY OF THE α-CAPRICORNID METEOROID STREAM
ABSTRACT The Jupiter-family comet 169P/NEAT (previously known as asteroid 2002 EX 12 ) has a dynamical association with the α-Capricornid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission to âŒ4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of <10 â4 is obtained with an upper limit to the mass loss of âŒ10 â2 kg s â1 . The effective radius of nucleus is found to be 2.3 ± 0.4 km. Red filter photometry yields a rotational period of 8.4096 ± 0.0012 hr, and the range of the amplitude 0.29 ± 0.02 mag is indicative of a moderately spherical shape having a projected axis ratio âŒ1.3. The comet shows redder colors than the Sun, being compatible with other dead comet candidates. The calculated lost mass per revolution is âŒ10 9 kg. If it has sustained this mass loss over the estimated 5000 yr age of the α-Capricornid meteoroid stream, the total mass loss from 169P/NEAT (âŒ10 13 kg) is consistent with the reported stream mass (⌠10 13 -10 15 kg), suggesting that the stream is the product of steady disintegration of the parent at every return
Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality
A novel one-step synthetic route, the double in situ approach, is used to produce both TiO2nanoparticles and polymer (PET), and simultaneously forming a nanocomposite with multi-functionality. The method uses the release of water during esterification to hydrolyze titanium (IV) butoxide (Ti(OBu)4) forming nano-TiO2in the polymerization vessel. This new approach is of general significance in the preparation of polymer nanocomposites, and will lead to a new route in the synthesis of multi-functional polymer nanocomposites
Osteoblast-like cell responses to silicate ions released from 45S5-type bioactive glass and siloxane-doped vaterite
Silicate ions released from bioactive glasses and ceramics have been reported to stimulate osteogenic cell functions. Here, we evaluated osteoblast-like cell reactions to silicate ions released from two different types of materials, 45S5 bioactive glass (BG) and siloxane-doped vaterite (SiV), to investigate the influence of the ionic structure of silicate ions on osteoblast-like cell properties. BG and SiV powders were prepared by using melt-quenching and carbonation methods, respectively. Aminopropyltriethoxysilane was used as a siloxane source of SiV. MC3T3-E1 and SaOS-2 cells were cultured in media containing dissolved BG or SiV ions (10â50 ppm of Si). Cell proliferation (metabolic activity), differentiation (alkaline phosphatase activity) and mineralisation (Ca deposition) were examined. 29Si NMR spectra demonstrated that Q0,1 species and T0â3 species were released from BG and SiV, respectively. Proliferation and mineralisation of the two types of cells were influenced by silicate ions released from BG and SiV in a concentration-dependent manner. In particular, there were significant differences (P < 0.05) in the degree of proliferation and Ca deposition levels in SaOS-2 cells treated with dissolved BG and SiV ions. Furthermore, Ca deposition in SaOS-2 cells was influenced by both the presence of silicate ions and the duration of exposure of cells to them. The structure of silicate ions influenced the proliferation and mineralisation of SaOS-2 cells incubated for different time periods in culture media containing different Si concentrations. Understanding the effect of Si on bone cell behaviour will enable a design-led approach to further BG optimisation
Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping
We address one of the main challenges to TiO2-photocatalysis, namely band gap
narrowing, by combining nanostructural changes with doping. With this aim we
compare TiO2's electronic properties for small 0D clusters, 1D nanorods and
nanotubes, 2D layers, and 3D surface and bulk phases using different
approximations within density functional theory and GW calculations. In
particular, we propose very small (R < 0.5 nm) but surprisingly stable
nanotubes with promising properties. The nanotubes are initially formed from
TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing
to a rutile nanorod structure. We find that quantum confinement effects - as
expected - generally lead to a widening of the energy gap. However,
substitutional doping with boron or nitrogen is found to give rise to
(meta-)stable structures and the introduction of dopant and mid-gap states
which effectively reduce the band gap. Boron is seen to always give rise to
n-type doping while depending on the local bonding geometry, nitrogen may give
rise to n-type or p-type doping. For under coordinated TiO2 surface structures
found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise
to acceptor states while for larger clusters and bulk structures donor states
are introduced
Electrospinning 3D bioactive glasses for wound healing
An electrospinning technique was used to produce three-dimensional (3D) bioactive glass fibrous scaffolds, in the SiO2-CaO system, for wound healing applications. Previously, it was thought that 3D cotton wool-like structures could only be produced when the sol contained calcium nitrate, implying that the Ca2+ and its electronic charge had a significant effect on the structure produced. Here, fibres with a 3D appearance were also electrospun from compositions containing only silica. A polymer binding agent was added to inorganic sol-gel solutions, enabling electrospinning prior to bioactive glass network formation and the polymer was removed by calcination. While the addition of Ca2+ contributes to the 3D morphology, here we show that other factors, such as relative humidity, play an important role in producing the 3D cotton-wool-like macrostructure of the fibres. A human dermal fibroblast cell line (CD-18CO) was exposed to dissolution products of the samples. Cell proliferation and metabolic activity tests were carried out and a VEGF ELISA showed a significant increase in VEGF production in cells exposed to the bioactive glass samples compared to control in DMEM. A novel SiO2-CaO nanofibrous scaffold was created that showed tailorable physical and dissolution properties, the control and composition of these release products are important for directing desirable wound healing interactions
- âŠ