74 research outputs found

    Ti Isotope Abundances in Whole Meteorites

    Get PDF
    Previous work has identified the presence of nonlinear isotope effects for Ti in CM and CV chondrites (NPW, 1984, 1985; KPW, 1985; Niemeyer and Lugmair, 1984). We report new measurements on CO and CV meteorites, two chondrites (Parnallee, LL3; Parsa, E4) and a shergottite. Since our earlier reports (NPW, 1985; KPW, 1985) on the absolute Ti composition, we have concentrated on the measurement of Ti abundances normalized to ^(46)Ti/^(48)Ti, in order to establish first the extent of nonlinear effects

    Longitudinal Changes of Mineral Concentrations in Preterm and Term Human Milk from Lactating Swiss Women.

    Get PDF
    <b></b> An adequate mineral supply to preterm infants is essential for normal growth and development. This study aimed to compare the mineral contents of human milk (HM) from healthy mothers of preterm (28-32 weeks) and full term (>37 weeks) infants. Samples were collected weekly for eight weeks for the term group (n = 34) and, biweekly up to 16 weeks for the preterm group (n = 27). Iron, zinc, selenium, copper, iodine, calcium, magnesium, phosphorus, potassium, and sodium were quantitatively analyzed by Inductively Coupled Plasma-Mass Spectrometry. The mineral contents of both HM showed parallel compositional changes over the period of lactation, with occasional significant differences when compared at the same postpartum age. However, when the comparisons were performed at an equivalent postmenstrual age, preterm HM contained less zinc and copper from week 39 to 48 (p < 0.002) and less selenium from week 39 to 44 (p < 0.002) than term HM. This translates into ranges of differences (min-max) of 53% to 78%, 30% to 72%, and 11% to 33% lower for zinc, copper, and selenium, respectively. These data provide comprehensive information on the temporal changes of ten minerals in preterm HM and may help to increase the accuracy of the mineral fortification of milk for preterm consumption

    The Random Nature of Genome Architecture: Predicting Open Reading Frame Distributions

    Get PDF
    Background: A better understanding of the size and abundance of open reading frames (ORFS) in whole genomes may shed light on the factors that control genome complexity. Here we examine the statistical distributions of open reading frames (i.e. distribution of start and stop codons) in the fully sequenced genomes of 297 prokaryotes, and 14 eukaryotes. Methodology/Principal Findings: By fitting mixture models to data from whole genome sequences we show that the size-frequency distributions for ORFS are strikingly similar across prokaryotic and eukaryotic genomes. Moreover, we show that i) a large fraction (60–80%) of ORF size-frequency distributions can be predicted a priori with a stochastic assembly model based on GC content, and that (ii) size-frequency distributions of the remaining “non-random” ORFs are well-fitted by log-normal or gamma distributions, and similar to the size distributions of annotated proteins. Conclusions/Significance: Our findings suggest stochastic processes have played a primary role in the evolution of genome complexity, and that common processes govern the conservation and loss of functional genomics units in both prokaryotes and eukaryotes.8 page(s

    A Systematic Survey of Mini-Proteins in Bacteria and Archaea

    Get PDF
    BACKGROUND: Mini-proteins, defined as polypeptides containing no more than 100 amino acids, are ubiquitous in prokaryotes and eukaryotes. They play significant roles in various biological processes, and their regulatory functions gradually attract the attentions of scientists. However, the functions of the majority of mini-proteins are still largely unknown due to the constraints of experimental methods and bioinformatic analysis. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we extracted a total of 180,879 mini-proteins from the annotations of 532 sequenced genomes, including 491 strains of Bacteria and 41 strains of Archaea. The average proportion of mini-proteins among all genomic proteins is approximately 10.99%, but different strains exhibit remarkable fluctuations. These mini-proteins display two notable characteristics. First, the majority are species-specific proteins with an average proportion of 58.79% among six representative phyla. Second, an even larger proportion (70.03% among all strains) is hypothetical proteins. However, a fraction of highly conserved hypothetical proteins potentially play crucial roles in organisms. Among mini-proteins with known functions, it seems that regulatory and metabolic proteins are more abundant than essential structural proteins. Furthermore, domains in mini-proteins seem to have greater distributions in Bacteria than Eukarya. Analysis of the evolutionary progression of these domains reveals that they have diverged to new patterns from a single ancestor. CONCLUSIONS/SIGNIFICANCE: Mini-proteins are ubiquitous in bacterial and archaeal species and play significant roles in various functions. The number of mini-proteins in each genome displays remarkable fluctuation, likely resulting from the differential selective pressures that reflect the respective life-styles of the organisms. The answers to many questions surrounding mini-proteins remain elusive and need to be resolved experimentally

    Non-Coding RNA Prediction and Verification in Saccharomyces cerevisiae

    Get PDF
    Non-coding RNA (ncRNA) play an important and varied role in cellular function. A significant amount of research has been devoted to computational prediction of these genes from genomic sequence, but the ability to do so has remained elusive due to a lack of apparent genomic features. In this work, thermodynamic stability of ncRNA structural elements, as summarized in a Z-score, is used to predict ncRNA in the yeast Saccharomyces cerevisiae. This analysis was coupled with comparative genomics to search for ncRNA genes on chromosome six of S. cerevisiae and S. bayanus. Sets of positive and negative control genes were evaluated to determine the efficacy of thermodynamic stability for discriminating ncRNA from background sequence. The effect of window sizes and step sizes on the sensitivity of ncRNA identification was also explored. Non-coding RNA gene candidates, common to both S. cerevisiae and S. bayanus, were verified using northern blot analysis, rapid amplification of cDNA ends (RACE), and publicly available cDNA library data. Four ncRNA transcripts are well supported by experimental data (RUF10, RUF11, RUF12, RUF13), while one additional putative ncRNA transcript is well supported but the data are not entirely conclusive. Six candidates appear to be structural elements in 5′ or 3′ untranslated regions of annotated protein-coding genes. This work shows that thermodynamic stability, coupled with comparative genomics, can be used to predict ncRNA with significant structural elements

    Hemotin, a regulator of phagocytosis encoded by a small ORF and xonserved across metazoans

    Get PDF
    Translation of hundreds of small ORFs (smORFs) of less than 100 amino acids has recently been revealed in vertebrates and Drosophila. Some of these peptides have essential and conserved cellular functions. In Drosophila, we have predicted a particular smORF class encoding ~80 aa hydrophobic peptides, which may function in membranes and cell organelles. Here, we characterise hemotin, a gene encoding an 88aa transmembrane smORF peptide localised to early endosomes in Drosophila macrophages. hemotin regulates endosomal maturation during phagocytosis by repressing the cooperation of 14-3-3ζ with specific phosphatidylinositol (PI) enzymes. hemotin mutants accumulate undigested phagocytic material inside enlarged endo-lysosomes and as a result, hemotin mutants have reduced ability to fight bacteria, and hence, have severely reduced life span and resistance to infections. We identify Stannin, a peptide involved in organometallic toxicity, as the Hemotin functional homologue in vertebrates, showing that this novel regulator of phagocytic processing is widely conserved, emphasizing the significance of smORF peptides in cell biology and disease

    Misregulation of Scm3p/HJURP Causes Chromosome Instability in Saccharomyces cerevisiae and Human Cells

    Get PDF
    The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability

    An Integrated Approach for Finding Overlooked Genes in Shigella

    Get PDF
    Background: The completion of numerous genome sequences introduced an era of whole-genome study. However, many genes are missed during genome annotation, including small RNAs (sRNAs) and small open reading frames (sORFs). In order to improve genome annotation, we aimed to identify novel sRNAs and sORFs in Shigella, the principal etiologic agents of bacillary dysentery. Methodology/Principal Findings: We identified 64 sRNAs in Shigella, which were experimentally validated in other bacteria based on sequence conservation. We employed computer-based and tiling array-based methods to search for sRNAs, followed by RT-PCR and northern blots, to identify nine sRNAs in Shigella flexneri strain 301 (Sf301) and 256 regions containing possible sRNA genes. We found 29 candidate sORFs using bioinformatic prediction, array hybridization and RT-PCR verification. We experimentally validated 557 (57.9%) DOOR operon predictions in the chromosomes of Sf301 and 46 (76.7%) in virulence plasmid.We found 40 additional co-expressed gene pairs that were not predicted by DOOR. Conclusions/Significance: We provide an updated and comprehensive annotation of the Shigella genome. Our study increased the expected numbers of sORFs and sRNAs, which will impact on future functional genomics and proteomics studies. Our method can be used for large scale reannotation of sRNAs and sORFs in any microbe with a known genom

    Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity.

    Get PDF
    Over recent years, accumulated evidence suggests that autophagy induction is protective in animal models of a number of neurodegenerative diseases. Intense research in the field has elucidated different pathways through which autophagy can be upregulated and it is important to establish how modulation of these pathways impacts upon disease progression in vivo and therefore which, if any, may have further therapeutic relevance. In addition, it is important to understand how alterations in these target pathways may affect normal physiology when constitutively modulated over a long time period, as would be required for treatment of neurodegenerative diseases. Here we evaluate the potential protective effect of downregulation of calpains. We demonstrate, in Drosophila, that calpain knockdown protects against the aggregation and toxicity of proteins, like mutant huntingtin, in an autophagy-dependent fashion. Furthermore, we demonstrate that, overexpression of the calpain inhibitor, calpastatin, increases autophagosome levels and is protective in a mouse model of Huntington's disease, improving motor signs and delaying the onset of tremors. Importantly, long-term inhibition of calpains did not result in any overt deleterious phenotypes in mice. Thus, calpain inhibition, or activation of autophagy pathways downstream of calpains, may be suitable therapeutic targets for diseases like Huntington's disease.This is the published version of the manuscript. It is available online from NPG in Cell Death and Differentiaiton here: http://www.nature.com/cdd/journal/vaop/ncurrent/full/cdd2014151a.html

    Classification and function of small open reading frames

    Get PDF
    Small open reading frames (smORFs) of 100 codons or fewer are usually - if arbitrarily - excluded from proteome annotations. Despite this, the genomes of many metazoans, including humans, contain millions of smORFs, some of which fulfil key physiological functions. Recently, the transcriptome of Drosophila melanogaster was shown to contain thousands of smORFs of different classes that actively undergo translation, which produces peptides of mostly unknown function. Here, we present a comprehensive analysis of smORFs in flies, mice and humans. We propose the existence of several functional classes of smORFs, ranging from inert DNA sequences to transcribed and translated cis-regulators of translation and peptides with a propensity to function as regulators of membrane-associated proteins, or as components of ancient protein complexes in the cytoplasm. We suggest that the different smORF classes could represent steps in gene, peptide and protein evolution. Our analysis introduces a distinction between different peptide-coding classes of smORFs in animal genomes, and highlights the role of model organisms for the study of small peptide biology in the context of development, physiology and human disease
    corecore