24 research outputs found

    X-ray radiography of cavitation in a beryllium alloy nozzle

    Full text link
    [EN] Making quantitative measurements of the vapor distribution in a cavitating nozzle is difficult, owing to the strong scattering of visible light at gas-liquid boundaries and wall boundaries, and the small lengths and time scales involved. The transparent models required for optical experiments are also limited in terms of maximum pressure and operating life. Over the past few years, x-ray radiography experiments at Argonne's Advanced Photon Source have demonstrated the ability to perform quantitative measurements of the line of sight projected vapor fraction in submerged, cavitating plastic nozzles. In this paper, we present the results of new radiography experiments performed on a submerged beryllium nozzle which is 520m in diameter, with a length/diameter ratio of 6. Beryllium is a light, hard metal that is very transparent to x-rays due to its low atomic number. We present quantitative measurements of cavitation vapor distribution conducted over a range of non-dimensional cavitation and Reynolds numbers, up to values typical of gasoline and diesel fuel injectors. A novel aspect of this work is the ability to quantitatively measure the area contraction along the nozzle with high spatial resolution. Analysis of the vapor distribution, area contraction and discharge coefficients are made between the beryllium nozzle and plastic nozzles of the same nominal geometry. When gas is dissolved in the fuel, the vapor distribution can be quite different from that found in plastic nozzles of the same dimensions, although the discharge coefficients are unaffected. In the beryllium nozzle, there were substantially fewer machining defects to act as nucleation sites for the precipitation of bubbles from dissolved gases in the fuel, and as such the effect on the vapor distribution was greatly reduced.Raul Payri was funded by a Fulbright visiting scholar grant in collaboration with the Ministry of Education, Culture and Sports of Spain (reference PRX14/00331) while performing this work. Juan P Viera was funded by the Spanish MINECO (grant EEBB-I-15-0976 under project TRA2012-36932).Duke, DJ.; Matusik, KE.; Kastengren, AL.; Swantek, AB.; Sovis, N.; Payri, R.; Viera-Sotillo, JP.... (2017). X-ray radiography of cavitation in a beryllium alloy nozzle. International Journal of Engine Research. 18(1-2):39-50. https://doi.org/10.1177/1468087416685965S3950181-

    Internal and near nozzle measurements of Engine Combustion Network "Spray G" gasoline direct injectors

    Full text link
    [EN] Gasoline direct injection (GDI) sprays are complex multiphase flows. When compared to multi-hole diesel sprays, the plumes are closely spaced, and the sprays are more likely to interact. The effects of multi-jet interaction on entrainment and spray targeting can be influenced by small variations in the mass fluxes from the holes, which in turn depend on transients in the needle movement and small-scale details of the internal geometry. In this paper, we present a comprehensive overview of a multi-institutional effort to experimentally characterize the internal geometry and near-nozzle flow of the Engine Combustion Network (ECN) Spray G gasoline injector. In order to develop a complete pictitre of the near-nozzle flow, a standardized setup was shared between facilities. A wide range of techniques were employed, including both X-ray and visible-light diagnostics. The novel aspects of this work include both new experimental measurements, and a comparison of the results across different techniques and facilities. The breadth and depth of the data reveal phenomena which were not apparent from analysis of the individual data sets. We show that plume-to-plume variations in the mass fluxes from the holes can cause large-scale asymmetries in the entrainment field and spray structure. Both internal flow transients and small-scale geometric features can have an effect on the external flow. The sharp turning angle of the flow into the holes also causes an inward vectoring of the plumes relative to the hole drill angle, which increases with time due to entrainment of gas into a low-pressure region between the plumes. These factors increase the likelihood of spray collapse with longer injection durations.The X-ray experiments were performed at the 7-BM and 32-ID beam lines of the APS at Argonne National Laboratory. Use of the APS is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-06CH11357. Research was also performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. Sandia National Laboratories is managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy National Nuclear Security Administration under contract DE-NA-0003525.Duke, DJ.; Kastengren, AL.; Matusik, KE.; Swantek, AB.; Powell, CF.; Payri, R.; Vaquerizo, D.... (2017). Internal and near nozzle measurements of Engine Combustion Network "Spray G" gasoline direct injectors. Experimental Thermal and Fluid Science. 88:608-621. https://doi.org/10.1016/j.expthermflusci.2017.07.015S6086218

    Comparison of different techniques for characterizing the diesel injector internal dimensions

    Full text link
    [EN] The geometry of certain parts of diesel injectors is key to the injection, atomization and fuel-air mixing phenomena. Small variations on the geometrical parameters may have a strong influence on the aforementioned processes. Thus, OEMs need to assess their manufacturing tolerances, whereas researchers in the field (both experimentalists and modelers) rely on the accuracy of a certain metrology technique for their studies. In the current paper, an investigation of the capability of different experimental techniques to determine the geometry of a modern diesel fuel injector has been performed. For this purpose, three main elements of the injector have been evaluated: the control volume inlet and outlet orifices, together with the nozzle orifices. While the direct observation of the samples through an optical microscope is only possible for the simplest pieces, both Computed Tomography Scanning and the visualization of silicone molds technique have proven their ability to characterize the most complex internal shapes corresponding to the internal injector elements. Indeed, results indicate that the differences observed among these methodologies for the determination of the control volume inlet orifice diameter and the nozzle orifice dimensions are smaller than the uncertainties related to the experimental techniques, showing that they are both equally accurate. This implies that the choice of a given technique for the particular application of determining the geometry of diesel injectors can be done on the basis of availability, intrusion and costs, rather than on its accuracy.This work was partly sponsored by "Ministerio de Economia y Competitividad", of the Spanish Government, in the frame of the Project "Estudio de la interaccion chorro-pared en condiciones realistas de motor", Reference TRA2015-67679-c2-1-R.Salvador, FJ.; Gimeno, J.; De La Morena, J.; Carreres, M. (2018). Comparison of different techniques for characterizing the diesel injector internal dimensions. Experimental Techniques. 42(5):467-472. https://doi.org/10.1007/s40799-018-0246-1S467472425Mobasheri R, Peng Z, Mostafa S (2012) Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling. Int J Heat Fluid Flow 33(1):59–69Dhar A, Agarwal AK (2015) Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine. Energy Convers Manag 93:357–366Mohan B, Yang W, Chou SK (2013) Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—a review. Renew Sust Energ Rev 28(x):664–676Petrovic V, Bracanovic Z, Grozdanic B, Petrovic S, Sazhin S, Knezevic D (2015) The design of a full flow dilution tunnel with a critical flow venturi for the measurement of diesel engine particulate emission. FME Trans 43(2):99–106Ilić Z, Rasuo B, Jovanović M, Janković D (2013) Impact of changing quality of air/fuel mixture during flight of a piston engine aircraft with respect to vibration low frequency spectrum. FME Trans 41(1):25–32Luján JM, Tormos B, Salvador FJ, Galgar K (2009) Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Preliminaru study I. Biomass & Bioenergy 33(6–7):941–947Postrioti L, Mariani F, Battistoni M (2012) Experimental and numerical momentum flux evaluation of high pressure diesel spray. Fuel 98:149–163Payri R, Salvador FJ, Gimeno J, Venegas O (2016) A technique to match the refractive index of different diesel fuels with the refractive index of transparent materials to improve the experimental visualization. Exp Tech 40(1):261–269Duran SP, Porter JM, Parker TE (2015) Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration. Appl Opt 54(7):1743Payri R, Salvador FJ, Gimeno J et al (2011) Flow regime effects on non-cavitating injection nozzles over spray behavior. Int J Heat Fluid Flow 32(1):273–284Koukouvinis P, Gavaises M, Li J, Wang L (2016) Large Eddy simulation of diesel injector including cavitation effects and correlation to erosion damage. Fuel 175:26–39Som S, Aggarwal SK (2010) Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combust Flame 157(6):1179–1193Salvador FJ, De la Morena J, Martínez-López J, Jaramillo D (2017) Assessment of compressibility effects on internal nozzle flow in diesel injectors at very high injection pressures. Energy Convers Manag 132:221–230Salvador FJ, Gimeno J, de la Morena J, Martí-Aldaraví P (2012) Using one-dimensional modelling to analyze the influence of the use of biodiesels on the dynamic behaviour of solenoid-operated injectors in common rail systems: Results of the simulation and discussion. Energy Convers Manag 54(1):122–132Taghavifar H, Khalilarya S, Jafarmadar S, Baghery F (2016) 3-D numerical consideration of nozzle structure on combustion and emission characteristics of DI diesel injector. Appl Math Model 40(19–20):8630–8646Edelbauer W (2017) Numerical simulation of cavitating injector flow and liquid spray break-up by combination of Eulerian–Eulerian and volume-of-fluid methods. Comput Fluids 144:19–33Salvador FJ, Carreres M, Jaramillo D, Martínez-López J (2015) Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Convers Manag 103:284–299Salvador FJ, Martínez-López J, Romero JV, Roselló MD (2013) Study of the influence of the needle eccentricity on the internal flow in diesel injector nozzles by computational fluid dynamics calculations. Int J Comput Math 91, no. June:24–31Payri R, Salvador FJ, Carreres M, De la Morena J (Apr. 2016) Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Convers Manag 114:376–391Salvador FJ, Hoyas S, Novella R, Martinez-López J (2011) Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proc Inst Mech Eng Part-D-J Automob Eng 225(D4):545–563Satkoski C, Shaver G (2011) Piezoelectric fuel injection: pulse-to-pulse coupling and flow rate estimation. IEEE/ASME Trans Mechatron 16(4):627–642Ferrari A, Mittica A (2016) Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules. Appl Energy 169:899–911Payri R, Salvador FJ, Gimeno J, De la Morena J (2011) Analysis of diesel spray atomization by means of a near-nozzle field visualization technique. At Sprays 21(9):753–774Li T, Moon S, Sato K, Yokohata H (Feb. 2017) A comprehensive study on the factors affecting near-nozzle spray dynamics of multi-hole GDI injectors. Fuel 190:292–302Yu W, Yang W, Zhao F (2017) Investigation of internal nozzle flow, spray and combustion characteristics fueled with diesel, gasoline and wide distillation fuel (WDF) based on a piezoelectric injector and a direct injection compression ignition engine. Appl Therm Eng 114:905–920Salvador FJ, Carreres M, Crialesi-Esposito M, Plazas AH (2017) Determination of critical operating and geometrical parameters in diesel injectors through one dimensional modelling, design of experiments and an analysis of variance. Proc Inst Mech Eng Part D J Automob EngMacian V, Bermúdez V, Payri R, Gimeno J (2003) New technique for determination of internal geometry of a diesel nozzle with the use of silicone methodology. Exp Tech 27, no April:39–43Piano A, Millo F, Postrioti L, Biscontini G, Cavicchi A, and Pesce FC, (2016) “Numerical and experimental assessment of a solenoid common-rail injector operation with advanced injection strategies,” SAE Int J Engines 9(1)Mitroglou N, Lorenzi M, Santini M, Gavaises M (2016) Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows. Exp Fluids 57(11):1–14Kastengren AL, Tilocco FZ, Powell CF, Manin J, Pickett LM, Payri R, Bazyn T (2012) Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior. At Sprays 22(12):1011–1052Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–6
    corecore