28 research outputs found

    Noise filtering techniques for electrospray quadrupole time of flight mass spectra

    Get PDF
    AbstractThe sensitivity of protein identification by peptide sequencing using a nanoelectrospray ion source is limited by our ability to identify peptide ions in the mass spectrum. Their intensity must be higher than the chemical noise level to allow a rapid localization in the spectrum. Multiply-charged peptide ions on or below this level can only be found because their isotopic pattern is denser than that of the mostly singly-charged chemical background ions. However, to find peptides by looking for multiply-charged isotope clusters can be very timeconsuming and may lead to misassignments of the first isotope. Here we present a software-based method to increase the signal to noise ratio of ion signals in an electrospray spectrum. The software has two elements, one to reduce the noise level and a second to increase the intensity of ion peaks. Both methods together generate a spectrum in which the signal to noise ratio of ion signals is considerably improved. Peptide ions previously hidden in the chemical background are dismantled and can now be localized and selected for fragmentation. The method has been used successfully to identify low level proteins separated by one dimensional gel electrophoresis

    Mechanistic insight into RET kinase inhibitors targeting the DFG-out conformation in RET-rearranged cancer

    Get PDF
    Oncogenic fusion events have been identified in a broad range of tumors. Among them, RET rearrangements represent distinct and potentially druggable targets that are recurrently found in lung adenocarcinomas. Here, we provide further evidence that current anti-RET drugs may not be potent enough to induce durable responses in such tumors. We report that potent inhibitors such as AD80 or ponatinib that stably bind in the DFG-out conformation of RET may overcome these limitations and selectively kill RET-rearranged tumors. Using chemical genomics in conjunction with phosphoproteomic analyses in RET-rearranged cells we identify the CCDC6-RETI788N mutation and drug-induced MAPK pathway reactivation as possible mechanisms, by which tumors may escape the activity of RET inhibitors. Our data provide mechanistic insight into the druggability of RET kinase fusions that may be of help for the development of effective therapies targeting such tumors

    Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25

    Get PDF
    Thymic T cell progenitor (TCP) importation is a periodic, gated event that is dependent on the expression of functional P-selectin ligands on TCPs. Occupancy of intrathymic TCP niches is believed to negatively regulate TCP importation, but the nature of this feedback mechanism is not yet resolved. We show that P-selectin and CCL25 are periodically expressed in the thymus and are essential parts of the thymic gate-keeping mechanism. Periodicity of thymic TCP receptivity and the size of the earliest intrathymic TCP pool were dependent on the presence of functional P-selectin ligand on TCPs. Furthermore, we show that the numbers of peripheral blood lymphocytes directly affected thymic P-selectin expression and TCP receptivity. We identified sphingosine-1-phosphate (S1P) as one feedback signal that could mediate influence of the peripheral lymphocyte pool on thymic TCP receptivity. Our findings suggest a model whereby thymic TCP importation is controlled by both early thymic niche occupancy and the peripheral lymphocyte pool via S1P

    Binary Phases of Aliphatic N

    No full text
    corecore