15 research outputs found

    Effects of administration of a growth promoting implant during the suckling phase or at weaning on growth, reproduction, and ovarian development in replacement heifers grazing native range

    Get PDF
    Management strategies utilized during pre-breeding development of replacement heifers can impact fertility and the ovarian reserve. Angus- Hereford crossbred heifers (n = 233) were utilized over a 3-yr period to determine the effects of administration of a growth promoting implant at either branding or weaning on growth, reproduction, and ovarian development. Heifer calves were randomly assigned to one of three treatments: 1) nonimplanted controls (CON; n = 79), 2) implanted at approximately 2 mo of age (average calf age = 58 d) with Synovex-C (BIMP, n = 82), or 3) implanted at approximately 7 mo of age (average calf age = 210 d) with Synovex-C (WIMP; n = 72). In years 2 and 3, a subset of heifers (year 2 n = 16; year 3 n = 14) were unilaterally ovariectomized. Heifers implanted at 2 mo of age were heavier at weaning, yearling (mid-February; average calf age = 332 d), and at the beginning of the breeding season (P \u3c 0.01) compared to CON and WIMP heifers. Average daily gain (ADG) was similar among treatments from weaning to yearling and weaning to the start of the breeding season (P ≥ 0.61); however, WIMP heifers had increased (P = 0.05) ADG from yearling to the start of the breeding season compared to BIMP heifers. Antral follicle count and reproductive tract scores were not influenced by implant treatment (P ≥ 0.18). Response to synchronization of estrus was increased (P = 0.02) in WIMP compared to CON heifers, with BIMP heifers similar to all other treatments. First service conception rates tended to be increased (P = 0.09) in CON heifers compared to WIMP heifers, with BIMP heifers similar to CON and WIMP. Final pregnancy rates were similar (P = 0.54) among treatments. A treatment × yr interaction was detected (P = 0.01) for the number of primordial follicles/section with increased primordial follicles in WIMP heifers in year 3 compared to BIMP and WIMP heifers in year 2 and CON heifers in year 3, as well as in BIMP compared to WIMP heifers in year 2. Utilization of growth promoting implants did not negatively impact postweaning reproductive development or compromise pregnancy rates in beef heifers. Based on these results, administration of a growth promoting Synovex-C implant at 2 mo of age may allow for increased body weight at weaning, without hindering reproductive performance

    Dataset of RNA-Seq transcriptome of the fetal liver at day 83 of gestation associated with periconceptual maternal nutrition in beef heifers

    Get PDF
    Herein, we present a dataset based on the RNA-Seq analysis of liver tissue from bovine female fetuses at day 83 of gestation. The findings were reported in the main article, “Periconceptual maternal nutrition affects fetal liver programming of energy- and lipid-related genes”[1] . These data were generated to investigate the effects of periconceptual maternal vitamin and mineral supplementation and rates of body weight gain on the transcript abundance of genes associated with fetal hepatic metabolism and function. To this end, crossbred Angus beef heifers ( n = 35) were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial design. The main effects tested were vitamin and mineral supplementation (VTM or NoVTM –at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG –0.28 kg/d) or moderate (MG – 0.79 kg/d) – from breeding to day 83). The fetal liver was collected on day 83 ± 0.27 of gestation. After total RNA isolation and quality control, strand-specific RNA libraries were prepared and sequenced on the Illumina® NovaSeq 60 0 0 platform to generate paired-end 150-bp reads. After read mapping and counting, differential expression analysis was performed with edgeR. We identified 591 unique differentially expressed genes across all six vitamin- gain contrasts (FDR ≤ 0.1). To our knowledge, this is the first dataset investigating the fetal liver transcriptome in response to periconceptual maternal vitamin and mineral supplementation and/or the rate of weight gain. The data described in this article provides genes and molecular pathways differentially programming liver development and function

    Maternal Vitamin and Mineral Supplementation and Rate of Maternal Weight Gain Affects Placental Expression of Energy Metabolism and Transport-Related Genes

    Get PDF
    Maternal nutrients are essential for proper fetal and placental development and function. However, the effects of vitamin and mineral supplementation under two rates of maternal weight gain on placental genome-wide gene expression have not been investigated so far. Furthermore, biological processes and pathways in the placenta that act in response to early maternal nutrition are yet to be elucidated. Herein, we examined the impact of maternal vitamin and mineral supplementation (from pre-breeding to day 83 post-breeding) and two rates of gain during the first 83 days of pregnancy on the gene expression of placental caruncles (CAR; maternal placenta) and cotyledons (COT; fetal placenta) of crossbred Angus beef heifers. We identified 267 unique differentially expressed genes (DEG). Among the DEGs from CAR, we identified ACAT2, SREBF2, and HMGCCS1 that underlie the cholesterol biosynthesis pathway. Furthermore, the transcription factors PAX2 and PAX8 were over-represented in biological processes related to kidney organogenesis. The DEGs from COT included SLC2A1, SLC2A3, SLC27A4, and INSIG1. Our over-representation analysis retrieved biological processes related to nutrient transport and ion homeostasis, whereas the pathways included insulin secretion, PPAR signaling, and biosynthesis of amino acids. Vitamin and mineral supplementation and rate of gain were associated with changes in gene expression, biological processes, and KEGG pathways in beef cattle placental tissues

    Untangling the placentome gene network of beef heifers in early gestation

    Get PDF
    The cotyledon and caruncle tissues provide a functional bridge between the fetus and the dam. However, the relationship between these tissues and the transcriptomic profile that underlies the tissue functions remains elusive. Herein we investigate the expression profile of cotyledon and caruncle from nulliparous beef heifers carrying female fetuses at day 83 of pregnancy to identify changes occurring across tissues that contribute to placental function and their tissue-specific roles. We identified 2654 differentially expressed genes [padj ≤ 0.05, abs(log2FC) ≥ 1], including nutrient transporters and paternally imprinted genes. We found key regulators of tissue function and differentiation, including FOXO4, GATA2, GATA3, and HAND1, rewired between the tissues. Finally, we shed light on the over-represented pathways related to immune tolerance, tissue differentiation and remodeling. Our findings highlighted the intricate and coordinated cross-talk between fetal-maternal tissues. They provided evidence of a fine-tuned gene regulatory network underlying pregnancy and tissue-specific function in the bovine placenta

    Fetal Hepatic Lipidome Is More Greatly Affected by Maternal Rate of Gain Compared with Vitamin and Mineral Supplementation at day 83 of Gestation

    Get PDF
    Herein, we evaluated the hepatic lipid metabolic profiles of bovine fetuses in response to maternal vitamin and mineral supplementation (VMSUP; supplemented (VTM) or not (NoVTM)) and two different rates of gain (GAIN; low gain (LG), 0.28 kg/d, or moderate gain (MG), 0.79 kg/d). Crossbred Angus heifers (n = 35; initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial arrangement, resulting in the following treatment combinations: NoVTM-LG (n = 9), NoVTM-MG (n = 9), VTM-LG (n = 9), and VTM-MG (n = 8). Heifers received their treatments until d 83 of gestation, when they were ovariohysterectomized. Fetuses were harvested and liver samples were analyzed via ultrahigh-performance liquid chromatography–tandem mass spectroscopy to characterize lipid profiles and abundances. We identified 374 biochemicals/metabolites belonging to 57 sub-pathways of the lipid metabolism super-pathway. The majority of the biochemicals/metabolites (n = 152) were significantly affected by the main effect of GAIN. Maternal moderate rates of gain resulted in greater abundances (p ≤ 0.0001) of ω-3 fatty acids (eicosapentaenoate, docosapentaenoate, and docosahexaenoate) and lower abundances (p ≤ 0.0001) of ω-6 fatty acids. Further, MG resulted in the accumulation of several diacylglycerols and depletion of the majority of the monoacylglycerols. Concentrations of nearly all acylcarnitines (p ≤ 0.03) were decreased in VTM-LG fetal livers compared to all other treatment combinations, indicating a greater rate of complete oxidation of fatty acids. Levels of secondary bile acids were impacted by VMSUP, being greater (p ≤ 0.0048) in NoVTM than in VTM fetal livers. Moreover, NoVTM combined with lower rate of gain resulted in greater concentrations of most secondary bile acid biochemicals/metabolites. These data indicate that maternal diet influenced and altered fetal hepatic lipid composition in the first trimester of gestation. Maternal body weight gain exerted a greater influence on fetal lipid profiles than vitamin and mineral supplementation. Specifically, lower rate of gain (0.28 kg/d) resulted in an increased abundance of the majority of the biochemicals/metabolites identified in this study

    Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers II: Effects on Concentration of Trace Minerals in Maternal Liver and Fetal Liver, Muscle, Allantoic, and Amniotic Fluids at Day 83 of Gestation

    Get PDF
    We evaluated the effects of vitamin and mineral supplementation (from pre-breeding to day 83 of gestation) and two rates of gain (from breeding to day 83 of gestation) on trace mineral concentrations in maternal and fetal liver, fetal muscle, and allantoic (ALF) and amniotic (AMF) fluids. Crossbred Angus heifers (n = 35; BW = 359.5 ± 7.1 kg) were randomly assigned to one of two vitamin and mineral supplementation treatments (VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)). The VMSUP factor was initiated 71 to 148 d before artificial insemination (AI), allowing time for the mineral status of heifers to be altered in advance of breeding. The VTM supplement (113 g·heifer−1·d−1) provided macro and trace minerals and vitamins A, D, and E to meet 110% of the requirements specified by the NASEM, and the NoVTM supplement was a pelleted product fed at a 0.45 kg·heifer−1·day−1 with no added vitamin and mineral supplement. At AI, heifers were assigned to one of two rates of gain treatments (GAIN; low gain (LG) 0.28 kg/d or moderate gain (MG) 0.79 kg/d) within their respective VMSUP groups. On d 83 of gestation fetal liver, fetal muscle, ALF, and AMF were collected. Liver biopsies were performed prior to VMSUP factor initiation, at the time of AI, and at the time of ovariohysterectomy. Samples were analyzed for concentrations of Se, Cu, Zn, Mo, Mn, and Co. A VMSUP × GAIN × day interaction was present for Se and Cu (p \u3c 0.01 and p = 0.02, respectively), with concentrations for heifers receiving VTM being greater at AI and tissue collection compared with heifers not receiving VTM (p \u3c 0.01). A VMSUP × day interaction (p = 0.01) was present for Co, with greater (p \u3c 0.01) concentrations for VTM than NoVTM at the time of breeding. VTM-MG heifers had greater concentrations of Mn than all other treatments (VMSUP × GAIN, p \u3c 0.01). Mo was greater (p = 0.04) for MG than LG, while Zn concentrations decreased throughout the experiment (p \u3c 0.01). Concentrations of Se (p \u3c 0.01), Cu (p = 0.01), Mn (p = 0.04), and Co (p = 0.01) were greater in fetal liver from VTM than NoVTM. Mo (p ≤ 0.04) and Co (p \u3c 0.01) were affected by GAIN, with greater concentrations in fetal liver from LG than MG. In fetal muscle, Se (p = 0.02) and Zn (p \u3c 0.01) were greater for VTM than NoVTM. Additionally, Zn in fetal muscle was affected by GAIN (p \u3c 0.01), with greater concentrations in LG than MG. The ALF in VTM heifers (p \u3c 0.01) had greater Se and Co than NoVTM. In AMF, trace mineral concentrations were not affected (p ≥ 0.13) by VMSUP, GAIN, or their interaction. Collectively, these data suggest that maternal nutrition pre-breeding and in the first trimester of gestation affects fetal reserves of some trace minerals, which may have long-lasting impacts on offspring performance and health

    Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers I: Effects on Dam Hormonal and Metabolic Status, Fetal Tissue and Organ Mass, and Concentration of Glucose and Fructose in Fetal Fluids at d 83 of Gestation

    Get PDF
    Thirty-five crossbred Angus heifers (initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial design to evaluate effects of vitamin and mineral supplementation [VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)] and different rates of gain [GAIN; low gain (LG), 0.28 kg/d, vs. moderate gain (MG), 0.79 kg/d] during the first 83 d of gestation on dam hormone and metabolic status, fetal tissue and organ mass, and concentration of glucose and fructose in fetal fluids. The VMSUP was initiated 71 to 148 d before artificial insemination (AI), allowing time for mineral status of heifers to be altered in advance of breeding. At AI heifers were assigned their GAIN treatment. Heifers received treatments until the time of ovariohysterectomy (d 83 ± 0.27 after AI). Throughout the experiment, serum samples were collected and analyzed for non-esterified fatty acids (NEFA), progesterone (P4), insulin, and insulin-like growth factor 1 (IGF-1). At ovariohysterectomy, gravid reproductive tracts were collected, measurements were taken, samples of allantoic (ALF) and amniotic (AMF) fluids were collected, and fetuses were dissected. By design, MG had greater ADG compared to LG (0.85 vs. 0.34 ± 0.04 kg/d, respectively; p \u3c 0.01). Concentrations of NEFA were greater for LG than MG (p = 0.04) and were affected by a VMSUP × day interaction (p \u3c 0.01), with greater concentrations for NoVTM on d 83. Insulin was greater for NoVTM than VTM (p = 0.01). A GAIN × day interaction (p \u3c 0.01) was observed for IGF-1, with greater concentrations for MG on d 83. At d 83, P4 concentrations were greater for MG than LG (GAIN × day, p \u3c 0.01), and MG had greater (p \u3c 0.01) corpus luteum weights versus LG. Even though fetal BW was not affected (p ≥ 0.27), MG fetuses had heavier (p = 0.01) femurs than LG, and VTM fetuses had heavier (p = 0.05) livers than those from NoVTM. Additionally, fetal liver as a percentage of BW was greater in fetuses from VTM (P = 0.05; 3.96 ± 0.06% BW) than NoVTM (3.79 ± 0.06% BW), and from LG (p = 0.04; 3.96 ± 0.06% BW) than MG (3.78 ± 0.06% BW). A VMSUP × GAIN interaction was observed for fetal small intestinal weight (p = 0.03), with VTM-MG being heavier than VTM-LG. Therefore, replacement heifer nutrition during early gestation can alter the development of organs that are relevant for future offspring performance. These data imply that compensatory mechanisms are in place in the developing conceptus that can alter the growth rate of key metabolic organs possibly in an attempt to increase or decrease energy utilization

    Vitamin and Mineral Supplementation and Rate of Weight Gain during the First Trimester of Gestation in Beef Heifers Alters the Fetal Liver Amino Acid, Carbohydrate, and Energy Profile at Day 83 of Gestation

    Get PDF
    The objective of this study was to evaluate the effects of feeding heifers a vitamin and mineral supplement and targeting divergent rates of weight gain during early gestation on the fetal liver amino acid, carbohydrate, and energy profile at d 83 of gestation. Seventy-two crossbred Angus heifers were randomly assigned in a 2 × 2 factorial arrangement to one of four treatments comprising the main effects of vitamin and mineral supplementation (VTM or NOVTM) and feeding to achieve different rates of weight gain (low gain [LG] 0.28 kg/day vs. moderate gain [MG] 0.79 kg/day). Thirty-five gestating heifers with female fetuses were ovariohysterectomized on d 83 of gestation and fetal liver was collected and analyzed by reverse phase UPLC-tandem mass spectrometry with positive and negative ion mode electrospray ionization, as well as by hydrophilic interaction liquid chromatography UPLC-MS/MS with negative ion mode ESI for compounds of known identity. The Glycine, Serine, and Threonine metabolism pathway and the Leucine, Isoleucine, and Valine metabolism pathway had a greater total metabolite abundance in the liver of the NOVTM-LG group and least in the VTM-LG group (p \u3c 0.01). Finally, both the TCA Cycle and Oxidative Phosphorylation pathways within the Energy Metabolism superpathway were differentially affected by the main effect of VTM, where the TCA cycle metabolites were greater (p = 0.04) in the NOVTM fetal livers and the Oxidative Phosphorylation biochemicals were greater (p = 0.02) in the fetal livers of the VTM supplemented heifers. These data demonstrate that the majority of metabolites that are affected by rate of weight gain or vitamin/mineral supplementation are decreased in heifers on a greater rate of weight gain or vitamin/mineral supplementation

    Dataset of RNA-Seq transcriptome of the fetal liver at day 83 of gestation associated with periconceptual maternal nutrition in beef heifers

    No full text
    Herein, we present a dataset based on the RNA-Seq analysis of liver tissue from bovine female fetuses at day 83 of gestation. The findings were reported in the main article, “Periconceptual maternal nutrition affects fetal liver programming of energy- and lipid-related genes” [1]. These data were generated to investigate the effects of periconceptual maternal vitamin and mineral supplementation and rates of body weight gain on the transcript abundance of genes associated with fetal hepatic metabolism and function. To this end, crossbred Angus beef heifers (n = 35) were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial design. The main effects tested were vitamin and mineral supplementation (VTM or NoVTM – at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG – 0.28 kg/d) or moderate (MG – 0.79 kg/d) – from breeding to day 83). The fetal liver was collected on day 83 ± 0.27 of gestation. After total RNA isolation and quality control, strand-specific RNA libraries were prepared and sequenced on the Illumina® NovaSeq 6000 platform to generate paired-end 150-bp reads. After read mapping and counting, differential expression analysis was performed with edgeR. We identified 591 unique differentially expressed genes across all six vitamin-gain contrasts (FDR ≤ 0.1). To our knowledge, this is the first dataset investigating the fetal liver transcriptome in response to periconceptual maternal vitamin and mineral supplementation and/or the rate of weight gain. The data described in this article provides genes and molecular pathways differentially programming liver development and function

    Periconceptual Maternal Nutrition Affects Fetal Liver Programming of Energy- and Lipid-Related Genes

    No full text
    During pregnancy, the fetus relies on the dam for its nutrient supply. Nutritional stimuli during fetal organ development can program hepatic metabolism and function. Herein, we investigated the role of vitamin and mineral supplementation (VTM or NoVTM—at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG) or moderate (MG)—from breeding to day 83) on the fetal liver transcriptome and the underlying biological pathways. Crossbred Angus beef heifers (n = 35) were randomly assigned to one of four treatments in a 2 × 2 factorial design (VTM_LG, VTM_MG, NoVTM_LG, and NoVTM_MG). Gene expression was measured with RNA-Seq in fetal livers collected on day 83 ± 0.27 of gestation. Our results show that vitamin and mineral supplementation and rate of weight gain led to the differential expression of hepatic genes in all treatments. We identified 591 unique differentially expressed genes across all six VTM-gain contrasts (FDR ≤ 0.1). Over-represented pathways were related to energy metabolism, including PPAR and PI3K-Akt signaling pathways, as well as lipid metabolism, mineral transport, and amino acid transport. Our findings suggest that periconceptual maternal nutrition affects fetal hepatic function through altered expression of energy- and lipid-related genes
    corecore