26 research outputs found

    Anterior Inferior Cerebellar Arteries Juxtaposed with the Internal Acoustic Meatus and Their Relationship to the Cranial Nerve VII/VIII Complex.

    Get PDF
    Vascular loops in the cerebellopontine angle (CPA) and their relationship to cranial nerves have been used to explain neurological symptoms. The anterior inferior cerebellar artery (AICA) has variable branches producing vascular loops that can compress the facial cranial nerve (CN) VII and vestibulocochlear (CN VIII) nerves. AICA compression of the facial-vestibulocochlear nerve complex can lead to various clinical presentations, including hemifacial spasm (HFS), tinnitus, and hemiataxia. The formation of arterial loops inside or outside of the internal auditory meatus (IAM) can cause abutment or compression of CN VII and CN VIII. Twenty-five (50 sides) fresh adult cadavers underwent dissection of the cerebellopontine angle in the supine position. In regard to relationships between the AICA and the nerves of the facial/vestibulocochlear complex, 33 arteries (66%) traveled in a plane between the facial/nervus intermedius nerves and the cochlear and vestibular nerves. Five arteries (10%) traveled below the CN VII/VIII complex, six (12%) traveled posterior to the nerve complex, four (8%) formed a semi-circle around the upper half of the nerve complex, and two (4%) traveled between and partially separated the nervus intermedius and facial nerve proper. Our study found that the majority of AICA will travel in a plane between the facial/nervus intermedius nerves and the cochlear and vestibular nerves. Although the relationship between the AICA and porus acusticus and AICA and the nerves of the CN VII/VIII complex are variable, based on our findings, some themes exist. Surgeons should consider these with approaches to the cerebellopontine angle

    Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders

    Get PDF
    The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins, and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Utilizing exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with YnMyr chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), with ages ranging from 1 to 50 years old, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%), and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%), and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%), and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each), as well as hypertrophy of the clava (24%) were common neuroimaging findings. acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism, and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localisation and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-Myristoylation was similarly affected in acbd6-deficient zebrafish and Xenopus tropicalis models, including Fus, Marcks, and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders

    Get PDF
    The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders

    Cardiac veins, an anatomical review

    No full text
    Background: The detailed investigations of the coronary arteries overshadow the anatomy and clinical relevance of the coronary venous tree. Many recent advances in diagnostic and therapeutic interventional cardiac procedures now involve manipulations of the coronary veins. Purpose: The aim of this paper is to provide a review of the coronary venous tree to assist in enhancing the clinical knowledge on the anatomy of the coronary veins. Methods: A literature search was conducted using google scholar, and pubmed NCBI data basem in search of peer-reviewed literature with keyword search including history of cardiac veins, coronary vein anatomy, and cardiac veins. Conclusion: Cardiac procedures such as ablations and retrograde cardioplegia depends on the ability to of the clinician to accurately identify critical cardiac venous structures from imaging studies and while during procedures. These advances demand that clinicians have a deeper understanding of the coronary venous tree as it relates to their anatomy and variants

    Noncontrast Computed Tomography vs Computed Tomography Perfusion or Magnetic Resonance Imaging Selection in Late Presentation of Stroke With Large-Vessel Occlusion

    Get PDF
    In patients with proximal anterior circulation occlusion stroke presenting in the extended window, are rates of favorable outcomes at 90 days comparable in the patients selected for thrombectomy with noncontrast computed tomography vs patients selected with computed tomography perfusion or magnetic resonance imaging? In a multicenter cohort of 1604 patients in the extended window with large-vessel occlusion, patients selected by noncontrast computed tomography had comparable clinical and safety outcomes with patients selected by computed tomography perfusion or magnetic resonance imaging. These findings suggest noncontrast computed tomography alone may be used as an alternative to advanced imaging in selecting patients with late-presenting large-vessel occlusion for mechanical thrombectomy. This cohort study compares the clinical outcomes of patients with stroke who presented 6 to 24 hours after symptom onset and were selected for mechanical thrombectomy by noncontrast computed tomography vs those selected by computed tomography perfusion or magnetic resonance imaging. Advanced imaging for patient selection in mechanical thrombectomy is not widely available. To compare the clinical outcomes of patients selected for mechanical thrombectomy by noncontrast computed tomography (CT) vs those selected by computed tomography perfusion (CTP) or magnetic resonance imaging (MRI) in the extended time window. This multinational cohort study included consecutive patients with proximal anterior circulation occlusion stroke presenting within 6 to 24 hours of time last seen well from January 2014 to December 2020. This study was conducted at 15 sites across 5 countries in Europe and North America. The duration of follow-up was 90 days from stroke onset. Computed tomography with Alberta Stroke Program Early CT Score, CTP, or MRI. The primary end point was the distribution of modified Rankin Scale (mRS) scores at 90 days (ordinal shift). Secondary outcomes included the rates of 90-day functional independence (mRS scores of 0-2), symptomatic intracranial hemorrhage, and 90-day mortality. Of 2304 patients screened for eligibility, 1604 patients were included, with a median (IQR) age of 70 (59-80) years; 848 (52.9%) were women. A total of 534 patients were selected to undergo mechanical thrombectomy by CT, 752 by CTP, and 318 by MRI. After adjustment of confounders, there was no difference in 90-day ordinal mRS shift between patients selected by CT vs CTP (adjusted odds ratio [aOR], 0.95 [95% CI, 0.77-1.17]; P = .64) or CT vs MRI (aOR, 0.95 [95% CI, 0.8-1.13]; P = .55). The rates of 90-day functional independence (mRS scores 0-2 vs 3-6) were similar between patients selected by CT vs CTP (aOR, 0.90 [95% CI, 0.7-1.16]; P = .42) but lower in patients selected by MRI than CT (aOR, 0.79 [95% CI, 0.64-0.98]; P = .03). Successful reperfusion was more common in the CT and CTP groups compared with the MRI group (474 [88.9%] and 670 [89.5%] vs 250 [78.9%]; P < .001). No significant differences in symptomatic intracranial hemorrhage (CT, 42 [8.1%]; CTP, 43 [5.8%]; MRI, 15 [4.7%]; P = .11) or 90-day mortality (CT, 125 [23.4%]; CTP, 159 [21.1%]; MRI, 62 [19.5%]; P = .38) were observed. In patients undergoing proximal anterior circulation mechanical thrombectomy in the extended time window, there were no significant differences in the clinical outcomes of patients selected with noncontrast CT compared with those selected with CTP or MRI. These findings have the potential to widen the indication for treating patients in the extended window using a simpler and more widespread noncontrast CT-only paradigm

    Checkpoint activation by Spd1: a competition-based system relying on tandem disordered PCNA binding motifs

    No full text
    DNA regulation, replication and repair are processes fundamental to all known organisms and the sliding clamp proliferating cell nuclear antigen (PCNA) is central to all these processes. S-phase delaying protein 1 (Spd1) from S. pombe, an intrinsically disordered protein that causes checkpoint activation by inhibiting the enzyme ribonucleotide reductase, has one of the most divergent PCNA binding motifs known. Using NMR spectroscopy, in vivo assays, X-ray crystallography, calorimetry, and Monte Carlo simulations, an additional PCNA binding motif in Spd1, a PIP-box, is revealed. The two tandemly positioned, low affinity sites exchange rapidly on PCNA exploiting the same binding sites. Increasing or decreasing the binding affinity between Spd1 and PCNA through mutations of either motif compromised the ability of Spd1 to cause checkpoint activation in yeast. These results pinpoint a role for PCNA in Spd1-mediated checkpoint activation and suggest that its tandemly positioned short linear motifs create a neatly balanced competition-based system, involving PCNA, Spd1 and the small ribonucleotide reductase subunit, Suc22R2. Similar mechanisms may be relevant in other PCNA binding ligands where divergent binding motifs so far have gone under the PIP-box radar.</p
    corecore