33 research outputs found

    Zr(IV)-Assisted Peptide Hydrolysis

    Get PDF
    The development of new reagents to efficiently cleave peptides and proteins has become increasingly important for protein structural studies and other applications. However, this has proved to be a very challenging task due to the extreme stability of the peptide amide bond. Transition metal complexes cleave proteins and peptides through either oxidative or hydrolytic pathways. However, hydrolytic cleavage is preferred over oxidative cleavage, because the latter process produces irreversibly modified peptide fragments. Metal-assisted peptide hydrolysis is introduced in Chapter I. The metals Ce(IV), Co(II), Co(III), Cu(II), Fe(III), Mo(IV), Ni(II), Pd(II), Pt(II), Zn(II), and Zr(IV) are described as promising non-enzymatic hydrolysis reagents. In Chapter II, Zr(IV)-assisted hydrolysis of the dipeptide Gly-Gly and of its N- and C- blocked analogs is described. The highest levels of cleavage were observed at pH values ranging from 4.4 to 4.7. When the pH was raised to ~ 7.0, hydrolysis yields were decreased and amounts of zirconium precipitation were increased proportionately. Zirconium(IV)-assisted peptide hydrolysis in the presence of 4,13-diaza-18-crown-6 is reported in Chapter III. The goal of this work was to use an azacrown ether to reduce Zr(IV) precipitation and enhance levels of hydrolysis at neutral pH. An experiment in which 16 glycine containing dipeptides were hydrolyzed by Zr(IV) and by Zr(IV)/4,13-diaza-18-crown-6 indicated that 4,13-diaza-18-crown-6 markedly enhanced the reactivity of Zr(IV) under near physiological conditions. Because Zr(IV) precipitation was not reduced in these reactions, we proposed that hydrolysis of peptides by Zr(IV)/4,13-diaza-18-crown-6 might be heterogeneous in nature. In Chapter IV, seventeen macrocyclic and open-chain Zr(IV) ligands were compared in order to gain mechanistic insights that would enable hydrolysis yields at neutral pH to be further improved. While the macrocyclic ligands 4,13-diaza-18-crown-6 and 4,10-trioxa-7,13-diazacyclopentadecane tended to produce higher levels of Zr(IV)-assisted dipeptide cleavage, it was not necessary to have a ring structure to enhance Zr(IV) reactivity. With respect to the open-chain ligands, the potential ability to form multiple chelate rings appeared to coincide with reduced levels of Zr(IV) precipitation as well as with reduced levels of dipeptide hydrolysis. In Chapter V, a summary of our results and conclusions is presented

    Vitamin A Transport Mechanism of the Multitransmembrane Cell-Surface Receptor STRA6.

    Get PDF
    Vitamin A has biological functions as diverse as sensing light for vision, regulating stem cell differentiation, maintaining epithelial integrity, promoting immune competency, regulating learning and memory, and acting as a key developmental morphogen. Vitamin A derivatives have also been used in treating human diseases. If vitamin A is considered a drug that everyone needs to take to survive, evolution has come up with a natural drug delivery system that combines sustained release with precise and controlled delivery to the cells or tissues that depend on it. This "drug delivery system" is mediated by plasma retinol binding protein (RBP), the principle and specific vitamin A carrier protein in the blood, and STRA6, the cell-surface receptor for RBP that mediates cellular vitamin A uptake. The mechanism by which the RBP receptor absorbs vitamin A from the blood is distinct from other known cellular uptake mechanisms. This review summarizes recent progress in elucidating the fundamental molecular mechanism mediated by the RBP receptor and multiple newly discovered catalytic activities of this receptor, and compares this transport system with retinoid transport independent of RBP/STRA6. How to target this new type of transmembrane receptor using small molecules in treating diseases is also discussed

    Identification of PLXDC1 and PLXDC2 as the transmembrane receptors for the multifunctional factor PEDF.

    Get PDF
    Pigment Epithelium Derived Factor (PEDF) is a secreted factor that has broad biological activities. It was first identified as a neurotrophic factor and later as the most potent natural antiangiogenic factor, a stem cell niche factor, and an inhibitor of cancer cell growth. Numerous animal models demonstrated its therapeutic value in treating blinding diseases and diverse cancer types. A long-standing challenge is to reveal how PEDF acts on its target cells and the identities of the cell-surface receptors responsible for its activities. Here we report the identification of transmembrane proteins PLXDC1 and PLXDC2 as cell-surface receptors for PEDF. Using distinct cellular models, we demonstrate their cell type-specific receptor activities through loss of function and gain of function studies. Our experiments suggest that PEDF receptors form homooligomers under basal conditions, and PEDF dissociates the homooligomer to activate the receptors. Mutations in the intracellular domain can have profound effects on receptor activities

    Differential Dopamine D1 and D3 Receptor Modulation and Expression in the Spinal Cord of Two Mouse Models of Restless Legs Syndrome

    Get PDF
    Restless Legs Syndrome (RLS) is often and successfully treated with dopamine receptor agonists that target the inhibitory D3 receptor subtype, however there is no clinical evidence of a D3 receptor dysfunction in RLS patients. In contrast, genome-wide association studies in RLS patients have established that a mutation of the MEIS1 gene is associated with an increased risk in developing RLS, but the effect of MEIS1 dysfunction on sensorimotor function remain unknown. Mouse models for a dysfunctional D3 receptor (D3KO) and Meis1 (Meis1KO) were developed independently, and each animal expresses some features associated with RLS in the clinic, but they have not been compared in their responsiveness to treatment options used in the clinic. We here confirm that D3KO and Meis1KO animals show increased locomotor activities, but that only D3KO show an increased sensory excitability to thermal stimuli. Next we compared the effects of dopaminergics and opioids in both animal models, and we assessed D1 and D3 dopamine receptor expression in the spinal cord, the gateway for sensorimotor processing. We found that Meis1KO share most of the tested behavioral properties with their wild type (WT) controls, including the modulation of the thermal pain withdrawal reflex by morphine, L-DOPA and D3 receptor (D3R) agonists and antagonists. However, Meis1KO and D3KO were behaviorally more similar to each other than to WT when tested with D1 receptor (D1R) agonists and antagonists. Subsequent Western blot analyses of D1R and D3R protein expression in the spinal cord revealed a significant increase in D1R but not D3R expression in Meis1KO and D3KO over WT controls. As the D3R is mostly present in the dorsal spinal cord where it has been shown to modulate sensory pathways, while activation of the D1Rs can activate motoneurons in the ventral spinal cord, we speculate that D3KO and Meis1KO represent two complementary animal models for RLS, in which the mechanisms of sensory (D3R-mediated) and motor (D1R-mediated) dysfunctions can be differentially explored

    Simultaneous Inhibition of Ceramide Hydrolysis and Glycosylation Synergizes to Corrupt Mitochondrial Respiration and Signal Caspase Driven Cell Death in Drug-Resistant Acute Myeloid Leukemia

    Get PDF
    Acute myelogenous leukemia (AML), the most prevalent acute and aggressive leukemia diagnosed in adults, often recurs as a difficult-to-treat, chemotherapy-resistant disease. Because chemotherapy resistance is a major obstacle to successful treatment, novel therapeutic intervention is needed. Upregulated ceramide clearance via accelerated hydrolysis and glycosylation has been shown to be an element in chemotherapy-resistant AML, a problem considering the crucial role ceramide plays in eliciting apoptosis. Herein we employed agents that block ceramide clearance to determine if such a "reset" would be of therapeutic benefit. SACLAC was utilized to limit ceramide hydrolysis, and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP) was used to block the glycosylation route. The SACLAC D-threo-PDMP inhibitor combination was synergistically cytotoxic in drug-resistant, P-glycoprotein-expressing (P-gp) AML but not in wt, P-gp-poor cells. Interestingly, P-gp antagonists that can limit ceramide glycosylation via depression of glucosylceramide transit also synergized with SACLAC, suggesting a paradoxical role for P-gp in the implementation of cell death. Mechanistically, cell death was accompanied by a complete drop in ceramide glycosylation, concomitant, striking increases in all molecular species of ceramide, diminished sphingosine 1-phosphate levels, resounding declines in mitochondrial respiratory kinetics, altered Akt, pGSK-3β, and Mcl-1 expression, and caspase activation. Although ceramide was generated in wt cells upon inhibitor exposure, mitochondrial respiration was not corrupted, suggestive of mitochondrial vulnerability in the drug-resistant phenotype, a potential therapeutic avenue. The inhibitor regimen showed efficacy in an in vivo model and in primary AML cells from patients. These results support the implementation of SL enzyme targeting to limit ceramide clearance as a therapeutic strategy in chemotherapy-resistant AML, inclusive of a novel indication for the use of P-gp antagonists.This work was supported by grants from the National Institutes of Health (National Cancer Institute NIH P01 CA171983 (T.P.L., M.K., M.C.C.), DOD-W81XWH-19-1-0213 (K.H.F.-W.), Spanish Ministry of Science and Innovation PID2020-113813RB-100 (G.F.), and the Brody Brothers Foundation (K.H.F.-W.), Kinston, NC.Peer reviewe

    Simultaneous Inhibition of Ceramide Hydrolysis and Glycosylation Synergizes to Corrupt Mitochondrial Respiration and Signal Caspase Driven Cell Death in Drug-Resistant Acute Myeloid Leukemia

    Get PDF
    Acute myelogenous leukemia (AML), the most prevalent acute and aggressive leukemia diagnosed in adults, often recurs as a difficult-to-treat, chemotherapy-resistant disease. Because chemotherapy resistance is a major obstacle to successful treatment, novel therapeutic intervention is needed. Upregulated ceramide clearance via accelerated hydrolysis and glycosylation has been shown to be an element in chemotherapy-resistant AML, a problem considering the crucial role ceramide plays in eliciting apoptosis. Herein we employed agents that block ceramide clearance to determine if such a “reset” would be of therapeutic benefit. SACLAC was utilized to limit ceramide hydrolysis, and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP) was used to block the glycosylation route. The SACLAC D-threo-PDMP inhibitor combination was synergistically cytotoxic in drug-resistant, P-glycoprotein-expressing (P-gp) AML but not in wt, P-gp-poor cells. Interestingly, P-gp antagonists that can limit ceramide glycosylation via depression of glucosylceramide transit also synergized with SACLAC, suggesting a paradoxical role for P-gp in the implementation of cell death. Mechanistically, cell death was accompanied by a complete drop in ceramide glycosylation, concomitant, striking increases in all molecular species of ceramide, diminished sphingosine 1-phosphate levels, resounding declines in mitochondrial respiratory kinetics, altered Akt, pGSK-3β, and Mcl-1 expression, and caspase activation. Although ceramide was generated in wt cells upon inhibitor exposure, mitochondrial respiration was not corrupted, suggestive of mitochondrial vulnerability in the drug-resistant phenotype, a potential therapeutic avenue. The inhibitor regimen showed efficacy in an in vivo model and in primary AML cells from patients. These results support the implementation of SL enzyme targeting to limit ceramide clearance as a therapeutic strategy in chemotherapy-resistant AML, inclusive of a novel indication for the use of P-gp antagonists

    Vitamin A transport and the transmembrane pore in the cell-surface receptor for plasma retinol binding protein.

    Get PDF
    Vitamin A and its derivatives (retinoids) play diverse and crucial functions from embryogenesis to adulthood and are used as therapeutic agents in human medicine for eye and skin diseases, infections and cancer. Plasma retinol binding protein (RBP) is the principal and specific vitamin A carrier in the blood and binds vitamin A at 1:1 ratio. STRA6 is the high-affinity membrane receptor for RBP and mediates cellular vitamin A uptake. STRA6 null mice have severely depleted vitamin A reserves for vision and consequently have vision loss, even under vitamin A sufficient conditions. STRA6 null humans have a wide range of severe pathological phenotypes in many organs including the eye, brain, heart and lung. Known membrane transport mechanisms involve transmembrane pores that regulate the transport of the substrate (e.g., the gating of ion channels). STRA6 represents a new type of membrane receptor. How this receptor interacts with its transport substrate vitamin A and the functions of its nine transmembrane domains are still completely unknown. These questions are critical to understanding the molecular basis of STRA6's activities and its regulation. We employ acute chemical modification to introduce chemical side chains to STRA6 in a site-specific manner. We found that modifications with specific chemicals at specific positions in or near the transmembrane domains of this receptor can almost completely suppress its vitamin A transport activity. These experiments provide the first evidence for the existence of a transmembrane pore, analogous to the pore of ion channels, for this new type of cell-surface receptor
    corecore