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Zirconium(IV)-Assisted Peptide Hydrolysis 

by 

Miki Kassai 

Under the Direction of Dr. Kathryn B. Grant 

ABSTRACT 

The development of new reagents to efficiently cleave peptides and proteins has become 

increasingly important for protein structural studies and other applications. However, this has 

proved to be a very challenging task due to the extreme stability of the peptide amide bond. 

Transition metal complexes cleave proteins and peptides through either oxidative or hydrolytic 

pathways. However, hydrolytic cleavage is preferred over oxidative cleavage, because the latter 

process produces irreversibly modified peptide fragments. Metal-assisted peptide hydrolysis is 

introduced in Chapter I. The metals Ce(IV), Co(II), Co(III), Cu(II), Fe(III), Mo(IV), Ni(II), 

Pd(II), Pt(II), Zn(II), and Zr(IV) are described as promising non-enzymatic hydrolysis reagents. 

In Chapter II, Zr(IV)-assisted hydrolysis of the dipeptide Gly-Gly and of its N- and C- blocked 

analogs is described. The highest levels of cleavage were observed at pH values ranging from 4.4 

to 4.7. When the pH was raised to ~ 7.0, hydrolysis yields were decreased and amounts of 

zirconium precipitation were increased proportionately. Zirconium(IV)-assisted peptide 

hydrolysis in the presence of 4,13-diaza-18-crown-6 is reported in Chapter III. The goal of this 

work was to use an azacrown ether to reduce Zr(IV) precipitation and enhance levels of 

hydrolysis at neutral pH. An experiment in which 16 glycine containing dipeptides were 

hydrolyzed by Zr(IV) and by Zr(IV)/4,13-diaza-18-crown-6 indicated that 4,13-diaza-18-crown-

6 markedly enhanced the reactivity of Zr(IV) under near physiological conditions. Because 



Zr(IV) precipitation was not reduced in these reactions, we proposed that hydrolysis of peptides 

by Zr(IV)/4,13-diaza-18-crown-6 might be heterogeneous in nature. In Chapter IV, seventeen 

macrocyclic and open-chain Zr(IV) ligands were compared in order to gain mechanistic insights 

that would enable hydrolysis yields at neutral pH to be further improved. While the macrocyclic 

ligands 4,13-diaza-18-crown-6 and 4,10-trioxa-7,13-diazacyclopentadecane tended to produce 

higher levels of Zr(IV)-assisted dipeptide cleavage, it was not necessary to have a ring structure 

to enhance Zr(IV) reactivity. With respect to the open-chain ligands, the potential ability to form 

multiple chelate rings appeared to coincide with reduced levels of Zr(IV) precipitation as well as 

with reduced levels of dipeptide hydrolysis. In Chapter V, a summary of our results and 

conclusions is presented. 
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CHAPTER I 

Introduction 

Major Advances in the Hydrolysis of Peptides and Proteins by Metal Ions and Complexes 

 (This chapter is verbatim as it appears in Grant, K. B.; Kassai, M; Current Organic Chemistry 
2006, 10, 1035-1049. The manuscript was written by Prof. Kathryn B. Grant with assistant from 
Miki Kassai. Following the chapter is an unpublished epilogue written by Miki Kassai. The 
epilogue is a review of all pertinent literature published after the Current Organic Chemistry 
manuscript. ) 
 

Abstract  

Metal ions and complexes that hydrolyze peptides and proteins have become increasingly 

important in recent years. These reagents have shown great promise for use in a variety of 

applications including protein sequencing and proteomics. When metal-assisted hydrolytic 

cleavage is accomplished under nondenaturing conditions of temperature and pH, their use can 

be extended to include the study of protein function and solution structure, the generation of 

semi-synthetic proteins, the proteolytic cleavage of bioengineered fusion proteins, and 

therapeutics. Yet, because of the extreme stability of the peptide amide bond, hydrolytically 

active metals are limited in number and there is now great interest in the development of new, 

more efficient reagents. In this review, we provide a description of relevant, early work with 

metal ions and complexes that have been used to hydrolyze unactivated peptide amide bonds in 

peptides and proteins. More importantly, we present an overview of recent contributions that 

have been made toward the development of synthetic metalloproteases that catalyze hydrolysis 

under near physiological conditions of temperature and pH.  
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Introduction 

 Reagents which mediate the selective cleavage of peptides and proteins have become 

increasingly important to a number of applications in the fields of chemistry and biology. 

Examples include the study of protein function and solution structure [1-8], the analysis of 

protein folding [9], and the mapping of enzyme active sites [10-20], metal and [14,16,18,19] 

ligand binding sites [21-25], and ligand induced conformational changes in protein structure 

[20,26-28]. Chemical protein footprinting is a new and promising application of this chemistry in 

which oxidizing iron complexes are used for the identification of solvent accessible amino acid 

residues in folded proteins [4,5,8,25-27,29]. Data from these protein cleavage studies provide 

crucial information regarding structural changes under equilibrium solution conditions and are 

therefore complementary to data obtained from x-ray crystallography [26]. These solution 

methods are essential for the study of proteins which are intrinsically difficult to crystallize (e.g., 

membrane proteins) for which little structural information is available. Cleaving agents are also 

indispensable for use in protein sequencing, and in newer applications such as proteomics [30], 

the generation of semi-synthetic proteins [31], and in proteolytic cleavage of bioengineered 

fusion proteins [32,33]. An important, long term goal is to develop new therapeutic agent 

designed to target disease [34-36].  

 Endopeptidases possess impressive catalytic power, but the broad substrate specificities 

exhibited by many of these enzymes (e.g., pepsin, chymotrypsin, thermolysin, pronase) make 

them inconvenient for use in sequencing experiments. (Groups of small peptide fragments are 

produced and tedious, limited proteolysis procedures must be employed.) In proteomics, highly 

complex protein mixtures must first be cleaved into smaller peptides. Electrospray ionization 

(ESI) MS/MS sequencing is then used to identify the original protein components in the mixtures. 
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Unfortunately, the peptides generated by non-specific endopeptidases are often too small to be 

matched to the proteins from which they were generated. Out of the more regioselective enzymes, 

the most affordable is trypsin. Hydrolysis occurs only at the C-terminal ends of lysine and 

arginine residues. As a result, the peptide fragments are intermediate in size and are usually able 

to provide an adequate amount of sequence information. However, other specific proteases such 

as Lys-C and Asp-N are costly and tend to generate very large peptides that fragment poorly in 

ESI MS/MS sequencing. The proteomic analysis of insoluble proteins (e.g., membrane proteins) 

is especially problematic. Fluorinated solvents such as hexafluoro-2-propanol are often needed, 

but the majority of endopeptidases do not work well under these conditions. 

 A second approach is the use of chemicals that mediate protein cleavage. The half-life for 

hydrolysis of unactivated amide bonds ranges from ca. 150 to 600 years at approximately neutral 

pH [37-39]. Thus, the extreme stability of amides has placed severe limits on the number of 

reagents available. Notwithstanding, most of the existing chemical agents require harsh 

conditions, must be used in high molar excess, and can produce low cleavage yields [40,41]. 

Cyanogen bromide is the most widely used, but the reaction is highly toxic, and is limited to 

cleavage at the carboxyl termini of methionine residues [42,43].  In the study of protein solution 

structure, the forcing conditions required (70% formic acid) would denature many folded 

proteins, resulting in a loss of relevant structural information. Additionally, peptides generated by 

cyanogen bromide are generally too large to fragment well in ESI-MS/MS sequencing 

experiments. The development of alternative cleavage strategies would therefore greatly 

facilitate the study of protein structure and function. 

 Metal ions and complexes are used to effect cleavage of the polypeptide backbone under 

nondenaturing conditions of temperature and pH [1-29,34-36,41,44-52]. Because mild conditions 
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can be employed, these reagents show great promise for use in the analysis of protein solution 

structure, in protein engineering (e.g., the generation of semi-synthetic proteins, the proteolytic 

cleavage of bioengineered fusion proteins), and in therapeutics. Thus, the design and synthesis of 

protein cleaving metal complexes has become an area of intensive study in recent years. 

Cleavage occurs by either an oxidative or a hydrolytic pathway and frequently requires 

precomplexation of the metal with the polypeptide.  

 Redox active metal ions and/or complexes of CuII [3,7,17,21,44], CrIII [45], CrV [46], FeIII 

[1,2,4-6,8,9,11,13,14,16,18,19,21,22,24-28], NiII [23], RhIII [11], and VV [10,12,15,20] have been 

used to promote the oxidative cleavage of peptide amide bonds in folded proteins under 

nondenaturing conditions. In the majority of cases (e.g., CuII, CrIII, Cr V, FeIII, and VV), cleavage 

is thought to arise from abstraction of peptide backbone α-carbon hydrogen atoms by hydroxyl 

radicals and other metal-generated, reactive oxygen species [45,53-56]. Subsequent degradation 

of the NH-Cα and Cα-C(O) bonds yields multiple, fragmented peptide products [57,58] (Fig. 

1.1). 

 

 In contrast to oxidative cleavage, hydrolysis of peptides and proteins involves the 

addition of water across the amide bond in the peptide backbone (Fig. 1.2). This generates native 
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Fig. 1.1. Some typical reaction products produced by α-carbon hydrogen atom abstraction and subsequent 
fragmentation of the A) NH-Cα [57] and B) Cα-C(O) peptide bonds [58]. 
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N-terminal amino and C-terminal carboxylate groups that can be easily reattached to form new 

peptide amide bonds, making the hydrolytic approach particularly attractive for use in protein 

sequencing, proteomics, and protein engineering applications.  

 

  

  

 

 Three basic mechanisms have been used to account for metal-promoted peptide 

hydrolysis [59,60]. In the first, the metal acts as a Lewis acid by activating an amide carbonyl 

carbon toward nucleophilic attack by a hydroxide (or water) molecule from the solvent (Fig. 

1.3(A)). In the second case, the metal activates a coordinated hydroxide (or water) (Fig. 1.3(B)). 

The third explanation is a combined mechanism in which the metal activates the carbonyl carbon 

while delivering a hydroxide (or water) molecule to the amide bond (Fig. 1.3(C)). In common to 

the three pathways is the formation of a tetrahedral intermediate (TI) (Fig. 1.3). The extreme 

stability of the unactivated peptide amide bond at neutral pH [37-39] can be attributed to not only 

to amide resonance, but also to the poor nature of the tetrahedral intermediate “RNH – ” leaving 

group [59,61].  In fact, it is the departure of this leaving group from the TI that is the rate-

determining step in the hydrolysis of unactivated amide bonds at neutral pH. Sayre has proposed 

that expulsion of the “RNH – ” group is facilitated by coordination of the metal ion to an 

alkoxide oxygen in the TI.  In this way, the metal reduces the basicity of the alkoxide oxygen 

without decreasing its nucleophilicity [59]. According to Sayre, TI breakdown at neutral pH can 

also be accelerated by a fourth mechanism [59] in which a metal-bound water serves as a general 

acid catalyst that protonates “RNH – ” (Fig. 1.3(D)). Because RNH-M is a poor leaving group in 
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Fig. 1.2. Peptide amide bond hydrolysis. 
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comparison to RNH2, direct interaction between the metal and the leaving nitrogen results in the 

formation of a hydrolytically inactive peptide complex. 

In the majority of cases, metal ions coordinate more strongly to individual amino acids 

than to peptides. As a result, metals often shift reaction equilibria in the direction of peptide 

hydrolysis [62]. Notwithstanding, in order to promote peptide amide bond hydrolysis under 

physiologically relevant conditions of temperature and pH, a candidate metal ion (or complex) 

should possess one or more of the following characteristics. In addition to being a strong Lewis 

acid, the metal center should be redox inactive to avoid side reactions that contribute to the 

production of protein damaging, reactive oxygen species. If the metal is oxophilic and readily 

forms complexes with high coordination numbers, it can more easily interact with an amide 

carbonyl oxygen in the peptide backbone (activating the carbon toward nucleophilic attack), 

while simultaneously delivering a hydroxide nucleophile to the scissile amide bond (Fig. 1.3(C)).  

 

Fast-ligand exchange kinetics are also desirable as catalytic turnover can be achieved if the metal 

promotes facile release of the hydroxide nucleophile at the scissile amide bond as well as release 

Mn

HO

HO

Mn + 1

- OH

R
C
O

N
R

H

R
C
O

N
R

H R
C
O

N
R

H

Mn

OH

R
C
O

NHR

R C
O

NHR
OH

R C
O-

NHR
OH

Mn

Mn + 1

HO C
O

NHR
R

Mn

O
H

H

R C
O

NHR
OH

Mn

OHH

B) C)A) D)Mn

 
 
Fig. 1.3. Peptide amide bond hydrolysis promoted by metals: four alternative pathways lead to the formation 
of a tetrahedral intermediate [59,60]. The superscript n indicates the charge on the metal (M). 
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of any coordinated peptide hydrolysis products. While the metal should lower the pKa value of 

water (≈ 15.7) to enable metal bound hydroxide nucleophile to exist in neutral media, it should 

not reduce the pKa of the amide nitrogen hydrogen atom (≈ 15) to a markedly low value. (Metals 

bind strongly to deprotonated amide nitrogens and are much less polarizing than protons. As a 

result, substitution of an amide nitrogen hydrogen atom for metal greatly reduces the 

susceptibility of the amide carbonyl carbon atom towards nucleophilic attack [62].) Finally, 

sequence specific peptide hydrolysis can be achieved if the metal is capable of coordinating to 

anchoring side chains in amino acid residues such as cysteine (Cys), aspartate (Asp), histidine 

(His), and methionine (Met). 

 Metal ions and/or complexes of CeIV, CoII, CoIII, CuII, MoIV, NiII, PdII, PtII, ZnII, and ZrIV 

have been used to effect hydrolytic cleavage of unactivated amide bonds in peptides [35,41,47-

49,51,52,63-88]. In the case of CuII, CoIII, NiII, PdII, and PtII, intact proteins have been cleaved 

[32-34,36,49,50,74,75,82,86,89-98]. Although hydrolysis is sometimes accomplished at ~pH 7.0 

and 37 °C [34-36,41,47-52], either extreme pH, and/or elevated temperatures are occasionally 

employed [32,33,63-78,82-86,88-90,92-94,96-98]. Significant progress has been made, but 

efficient hydrolytically active metals are limited in number. There is now great interest in the 

development of new metal-based reagents that target diverse amino acid sequences under mild 

conditions of temperature and pH.  

 In this review, we will present a description of relevant, early work with metal ions and 

complexes that have been utilized to hydrolyze unactivated peptide amide bonds in peptides and 

proteins. Additional, detailed information can be found in a number of excellent and 

comprehensive review articles written on this subject [60-62,99-111]. More importantly, this 

paper focuses on recent developments contributing to the design of synthetic metalloproteases 
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that catalyze the hydrolysis of peptide and protein substrates under near physiological conditions 

of temperature and pH. These reagents may serve as versatile biochemical tools for use in the 

study of protein function and solution structure, protein engineering, therapeutics, and other 

important applications in chemistry and biology. 

Hydrolysis of Peptides and Proteins by Metal Ions and Complexes  

Lanthanide Metals  

 Lanthanides are attractive candidates for use in peptide hydrolysis experiments. Because 

they are hard acids that interact preferentially with hard bases such as oxygen, hydrolytically 

inactive coordination involving amide nitrogens in the peptide backbone can be avoided [72]. 

Furthermore, in contrast to most transition metal complexes in which d-orbital bonding produces 

well defined coordination geometries, lanthanide ions form complexes with non-rigid, flexible 

geometries and high coordination numbers [72]. 

The first, published reports of lanthanide-assisted peptide hydrolysis were in 1956 and 

1958 [64,65]. In these early, pioneering studies, Bamann and coworkers treated a series of 

dipeptides with CeIV, CeIII, and LaIII. Optimal results were obtained with CeIV, which was used to 

hydrolyze Gly-Leu in over 70% yield after 24 h at pH 8.6 and 70 °C. Cerium(IV) is the only 

lanthanide with an accessible +4 oxidation state and has enhanced Lewis acid strength imparted 

by its high positive charge density. Thus, it is not surprising that peptide hydrolysis by CeIV has 

consistently been found to be superior in comparison to other lanthanide ions (e.g., LaIII, CeIII, 

PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII, HoIII, ErIII, TmIII, YbIII) [64,65,72,80]. This result can be 

accounted for by the exceptional ability of CeIV to activate the peptide amide carbonyl towards 

nucleophilic attack. Komiyama has proposed that CeIV withdraws electrons more efficiently than 

other lanthanides metals due to the stability of the trivalent state of cerium. Because the divalent 
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states of the lanthanides are relatively unstable, trivalent lanthanides are unable to withdraw 

electrons as efficiently and as a result, peptide hydrolysis yields are low [80,107,110]. It is also 

noteworthy that CeIV promotes facile, hydrolytic cleavage of deoxyribonucleic acids (DNA) 

[112-115].  

 In the peptide hydrolysis reactions described by Bamann and coworkers, the active 

hydrolytic species were heterogeneous lanthanide hydroxide gels [64,65]. Komiyama employed 

γ-cyclodextrin to solubilize CeIV, and was able to achieve homogeneous hydrolysis of the 

dipeptide Gly-Phe in 39% yield after 24 h at pH 8.0 and 60 °C [72]. When other dipeptides were 

investigated, CeIV was found to be relatively non-selective with respect to hydrolysis of specific 

amino acid sequences [72]. In a more extensive study of dipeptides, oligopeptides, and blocked 

peptides analogs, the same research group made a number of other important observations [80]. 

Cerium(IV) was shown to promote modest catalytic turnover and preferential hydrolysis of N-

terminal peptide amide bonds. In addition, free N-terminal amino and C-terminal carboxylate 

peptide groups, which coordinated directly to the CeIV analog PrIII in 1H NMR experiments, were 

found to be required for efficient CeIV hydrolysis of dipeptides with no metal-coordinating side 

chains. (The presence of amino acids with metal-coordinating side chains in free N-terminal and 

C-terminal peptides reduced hydrolysis yields.) Interestingly, the dipeptide amide Asp-Phe-NH2 

was efficiently hydrolyzed by CeIV, indicating that the carboxylate side chain of aspartate 

interacts with CeIV in place of the C-terminal carboxylate group. This significant finding 

suggests that CeIV should be capable of promoting sequence-specific hydrolysis adjacent to Asp 

residues in large peptides and proteins. Using 100 mM tris(hydroxymethyl)aminomethane (Tris) 

buffer, Komiyama and coworkers obtained optimal results with the dipeptide Gly-Phe, which 

was hydrolyzed by [Ce(NH4)2(NO3)6] in ~ 90% yield after 24 h at pH 8.0 and 80 °C [80].  
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Divalent Zinc 

 Zinc(II) possesses a number of properties that have been shown to play an important role 

in promoting peptide hydrolysis. Because of its stable d10 electron configuration, ZnII is redox 

inactive and able to avoid undesirable side reactions that contribute to oxidative peptide cleavage 

[116]. A second advantage arising from its filled d-shell is that there is no gain in ligand field 

stabilization energy associated with complex formation. Consequently, ZnII is able to assume a 

variety of different ligand geometries without any energy costs. With respect to catalysis, ZnII is 

kinetically labile and exchanges ligands rapidly [103,116]. Finally, ZnII is a strong Lewis acid 

because of its high charge density. Thus, it is not surprising that ZnII is a cofactor in the active 

sites of the majority proteases found in nature (e.g., carboxypeptidase A, carboxypeptidase B, 

thermolysin) [103].  

 One of the earliest examples of ZnII–assisted peptide hydrolysis was published by 

Bamann and coworkers in 1961 [66]. In this study, the dipeptide Gly-Leu was hydrolyzed at low 

levels after treatment with ZnII for 24 h at pH 8.6 and 70 °C [66]. More recently, Yashiro’s group 

reacted ZnCl2 with an extensive series of dipeptides [84]. They discovered that levels of 

hydrolysis were significantly higher in sequences containing either a serine (or threonine) at the 

C-terminal position. For example, upon treatment with ZnCl2 for 24 h at 70 °C and pH 7.0, 

hydrolysis yields were 91%, 83%, 4% and 6%, for Phe-Ser, Gly-Ser, Ser-Gly, and Gly-Gly 

respectively [84]. Yashiro proposed that the hydroxyl group of the serine (or threonine) side 

chain was able to facilitate peptide amide bond hydrolysis by promoting an N→O acyl 

rearrangement. In Xaa-Ser(Thr) sequences, intramolecular attack of the side chain hydroxyl on 

the amide carbonyl carbon produces a favorable five-membered ring transition state (Fig. 1.4). 

However, in the case of Ser(Thr)-Xaa sequences (e.g., Ser-Gly), the authors pointed out that 
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hydrolysis yields are low because an unfavorable four-membered ring transition state is formed. 

In a survey of twelve metal salts conducted at pH 7.0 and 70 °C, Yashiro demonstrated that Gly-

Ser was most efficiently hydrolyzed by ZnCl2 (in 83% yield), followed by the remaining eleven 

metals (PrCl3 > EuCl3 > NiCl2  (52% yield) > CeCl3 > CdCl2 > ErCl3 > LaCl3 > LuCl3 > MgCl2 

> CaCl2 = CuCl2 (6% yield)) [84]. In the case of CuCl2, the authors attributed the extremely low 

levels of hydrolysis to hydrolytically inactive metal coordination involving the amide nitrogen in 

the peptide backbone. (For example, the pKa value of the peptide amide nitrogen is lowered from 

~ 15 to 8 and 4 by NiII and CuII, respectively [62]. Therefore, CuII would be expected to form a 

stronger metal-amide nitrogen bond at neutral pH.) Yashiro and coworkers also proposed that 

coordination to the free N-terminal amino group is important only in assisting in the coordination 

of ZnII to the peptide backbone carbonyl oxygen (Fig. 1.4). By using an anchoring amino acid 

side chain to substitute for the N-terminal group, ZnII should be capable of promoting hydrolysis 

of internal Ser(Thr)-Xaa sequences in intact proteins. In the case of NiII [49], PdII [89,91,92,96], 

PtII [96], and even CuII [32,33,75,90,94,95,98], hydrolytic cleavage of Ser(Thr)-Xaa protein 

sequences has already been reported in the literature. 
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Fig. 1.4. In ZnII–assisted hydrolysis of Xaa-Ser(Thr) sequences, the side chain hydroxyl group of Ser(Thr)  
participates in an N→O acyl rearrangement that involves the formation of a five-membered ring transition 
state [84].  
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Cobalt Ions and Complexes 

 In 1956, Meriwether and Westheimer reacted cobalt(II) ions with the blocked dipeptide 

Phe-Gly-NH2 [63]. At pH values greater than 5.0, low levels of peptide hydrolysis could be 

detected after 72 h of treatment at 75° C. Similar results were obtained by Bamann and 

coworkers, who in 1961 showed that CoII ions could be used to hydrolyze Gly-Leu at detectable 

levels after 24 h at pH 8.6 and 70 °C [66]. Yet CoII, which is kinetically labile, is readily oxidized 

by atmospheric oxygen to inert CoIII. Because the above experiments appear to have been 

conducted under aerobic conditions, interpretation of these data might have been partially 

confounded if one-electron oxidation of CoII had occurred.  

 Soon after these early CoII studies were published, significant advances were made by 

Buckingham and coworkers, who developed a series of hydrolytically active CoIII complexes 

corresponding to the formula [CoN4(OH)(OH2)]
2+

 (where N4 = four nitrogen donor atoms, e.g., 

(en)2, trien, and tren) [68, 69,101,102,106]. The best, overall results were consistently obtained 

with cis-β-[Co(trien)(OH)(OH2)]
2+

. At pH 8.0 and 45 °C, Bentley and Creaser showed that the β-

trien complex was at least 50 times more effective in hydrolyzing Gly-Gly, compared to the α-

trien, tren, and (en)2 systems [47]. Buckingham used cis-β-[Co(trien)(OH)(OH2)]
2+ to achieve 

quantitative hydrolysis of Gly-Gly and other dipeptides after only 30 min at pH 7.5 and 60 °C– 

65 °C [69,106]. In addition to dipeptides, the N-terminal amino acids of a number of 

oligopeptides and proteins were hydrolyzed in quantitative yields [47]. 

 A necessary feature for efficient peptide hydrolysis by [CoN4(OH)(OH2)]
2+ complexes is 

the availability of two relatively labile cis-β sites in the octahedral coordination sphere of 

cobalt(III), with the remaining sites being occupied by inert nitrogen ligands [101]. The complex 
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[Co(trien)(OH)(OH2)]
2+ exists in geometrical cis-α, cis-β, and trans configurations (Fig. 1.5).  

The trans geometry does not allow for the required cis chelation of the peptide substrate, so 

direct hydrolysis does not occur. (Unlike the trien complex, systems such as  

[Co(en)2(OH)(OH2)]2+ undergo facile cis-trans isomerization, and as a result react more slowly 

and produce complex product mixtures [68,69,106].) 

 Although CoIII is a strong Lewis acid, [CoN4(OH)(OH2)] 2+ systems preferentially react 

with N-terminal amino acids to form inert complexes. Therefore, peptide hydrolysis is 

stoichiometric rather than catalytic [47,68,69,101,102,106]. Yet, the reduced lability of CoIII gave 

way to a number of informative mechanistic studies. For example, when cis-β-

[Co(trien)(OH2)2]
3+ was reacted with Gly-GlyOEt at pH 7.5 - 8.0 for 1 h at 25 °C, the 

intermediate shown in Fig. 1.5(D) was isolated [106,117]. Its direct participation in peptide 

hydrolysis was subsequently confirmed in 18O-labelling studies [106]. Taken together, these 

results support the conclusion that peptide hydrolysis by cis-β-[Co(trien)(OH2)2]
3+ proceeds 

through a pathway similar to the carbonyl activation mechanism shown in Fig. 1.3(A).  

 Prior to 2000, CoIII complexes had been used to hydrolyze only the N-terminal amide 
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Fig. 1.5.  A schematic diagram of the A) cis-α,  B) cis-β,  and C) trans isomers of [Co(trien)(OH)(OH2)]2+ 

[101]. D) Reaction intermediate isolated after cis-β-[Co(trien)(OH2)2]3+ was treated with Gly-GlyOEt at pH 
7.5-8.0 for 1 h at 25 °C [106,117]. 
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bonds in peptides and proteins. Cleavage of internal peptide amide bonds had not been achieved 

because the hydrolysis mechanism was shown to involve the coordination of CoIII to the free N-

terminal peptide or protein amino group (Fig. 1.5(D)) [47,68,69,101,102,106]. This limitation 

was overcome by Kumar and coworkers, who used the simple CoIII complexes 

[Co(H2O)(NH3)5]
3+

 and [Co(H2O)2(NH3)4]
3+ to hydrolyze hen egg lysozyme at a single internal 

Ala-Trp bond under extremely mild conditions [50]. After 26 h of treatment at pH 7.0 and 37 °C, 

the yields obtained with hexaamminecobalt(III) chloride, pentaammineaquacobalt(III) chloride, 

and tetraammindiaquacobalt(III) chloride were 0%, 35%, and 45%, respectively, indicating that 

the number of open coordination sites was important in the protein hydrolysis reaction. Although 

precise mechanistic details (e.g., the isomer geometry of the [Co(H2O)2(NH3)4]
3+

 complex) were 

not specified, 1H NMR spectra of lysozyme revealed that CoIII induced significant chemical shift 

changes in specific resonances corresponding to Trp 108 [50]. Because this amino acid residue is 

accessible to solvent in folded lysozyme, Kumar and coworkers suggested that its role might be 

to anchor CoIII in the proximity of the scissile Ala110-Trp111 peptide amide bond. Finally, the cis 

and trans isomers of the complex [Co(en)2(OH2)2]Br3 were shown to be inactive towards 

hydrolysis. Based on this result, Kumar concluded that the large ligand size of “en” might have 

prevented the metal center of the complex from accessing the peptide backbone of lysozyme [50]. 

 The next major advance was made by Suh and coworkers in 2003, when they presented 

the first evidence of catalytic protein hydrolysis by a CoIII complex [34]. Extensive screening of 

1,4,7,10-tetraazacyclododecane (cyclen)-peptide nucleic acid (PNA) combinatorial libraries led 

to the design of a highly reactive conjugate (1 in Fig. 1.6), consisting of a cyclen ligand 

covalently attached to a PNA oligomer that selectively binds to myoglobin. Using the CoIII 

complex of 1, myoglobin was hydrolyzed at internal Leu72-Gly73 and Leu89-Ala90 sequences 
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under extremely mild conditions. After 30 h at pH 7.5 and 37 °C, hydrolysis yields were ~ 50% 

and more importantly, despite the kinetically inert nature CoIII, catalytic turnover was achieved 

(kcat = 0.022 h-1) [34]. When other metals were used to substitute for CoIII, CuII was found to be 

less reactive, while CeIV, FeIII, HfIV, PdII, PtIV, and ZrIV failed to display any activity. In addition, 

no hydrolysis occurred when myoglobin was treated with CoIII-cyclen (without PNA) and when 

the CoIII-cyclen-PNA conjugate was reacted with other proteins such as albumin, γ-globulin, 

elongation factor P, gelatin A, and gelatin B. Because biogenic ligands readily sequester labile 

metals such as CuII, the authors insightfully pointed out that the use of relatively inert CoIII might 

be advantageous in medical applications [34]. 

 

 In 2005, Suh and coworkers published the results of a related study in which a 

combinatorial library consisting of ~15,000 modified cyclen-N-acylamino acid amide conjugates 

was screened against the enzyme peptide deformylase (PDF) [36]. This was done in an effort to 

identify a moderately sized, artificial metalloprotease capable of catalyzing the hydrolysis of a 

disease-related protein. (The molecular weights of 1 and other cyclen-PNA conjugates approach 

3000 gmol-  [34]. As a general rule, low molecular weight drugs are more effective as therapeutic 
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agents due to their ability to rapidly move across biological membranes.) PDF catalyzes 

deformylation of N-formylated proteins produced during prokaryotic translation. It is therefore 

an ideal target for antibiotic drugs: it is expressed in all Eubacteria (e.g., Mycobacterium 

tuberculosis which causes tuberculosis), but is absent from Archaea, animals, and fungi. Using 

the combinatorial approach described above, the authors identified the CoIII complex of cyclen 

conjugate 2 (Fig. 1.7).  

 

 

 

 

 

         

 

 

 

Cleavage of PDF was catalyzed at a single bond (Gln152-Arg153) in approximately 50% yield 

after 72 h of treatment at pH 7.5 and 37 °C (kcat ≈ 0.05 h-1). Furthermore, the relatively low 

molecular weight of the CoIII complex (644 gmol-1) enabled Suh and coworkers to conduct 

docking and molecular dynamics simulations.  These studies predicted preferential interaction of 

PDF with the S enantiomer of the complex, as well as a number of hydrogen-bonding 

interactions and van der Waals contacts between the complex and specific amino acid residues 

near the scissile Gln152-Arg153 peptide amide bond [36]. 
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Fig. 1.7.  A schematic diagram of cyclen-N-acylamino acid amide conjugate 2  [36].  
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Zirconium(IV) 

 Our research group has most thoroughly studied the early transition metal zirconium(IV). 

Our interest in using this metal to promote peptide hydrolysis was motivated by a number of 

factors. Zirconium(IV) is redox inactive and has enhanced Lewis acid strength imparted by its +4 

oxidation state, enabling ZrIV ions to efficiently hydrolyze DNA and activated phosphodiester 

bonds [118-120]. Because ZrIV is oxophilic and forms complexes with high coordination 

numbers [121], we envisioned that this metal center should be capable of activating an amide 

carbonyl oxygen in the peptide backbone, while simultaneously delivering a hydroxide 

nucleophile to the scissile amide bond (Fig. 1.3(C)). (The pKa values of ZrIV bound water 

molecules are < 0.6, enabling Zr-OH to readily exist in neutral media [122].) We also reasoned 

that the rapid-ligand exchange kinetics associated with ZrIV [123] should help to promote 

catalytic turnover. Finally, the preference of ZrIV for oxygen should avoid the formation of 

hydrolytically inactive peptide amide nitrogen complexes at neutral pH [124]. In spite of the 

numerous advantages of ZrIV, Komiyama and coworkers had reported that ZrIV effected only 

very low levels of peptide hydrolysis in 0.1 M Tris (3 in Fig. 1.8) buffer pH 7.0 ( ~ 25% 

conversion of Gly-Phe after 24 h at 80 °C [80]). 

 In aqueous solutions of [H+] < 0.5 M, ZrIV ions form an octanuclear 

[Zr8(OH)20(H2O)24]12+ species [123], while at pH values above 5.0, the formation of insoluble 

gels and precipitates [125] is thought to be responsible for the reduction in phosphodiester 

hydrolysis that occurs in this pH range [119]. In order to avoid the same complication with 

peptides (i.e., suppression of ZrIV-assisted hydrolysis at neutral pH), we employed the azacrown 

ether 4,13-diaza-18-crown-6 (4 in Fig. 1.8).  
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This ligand was of interest to us because it readily undergoes complexation with lanthanide 

metals [126] and because it lacks carboxylate groups which when present (e.g., in 

ethylenediaminetetraacetate (EDTA)) form hydrolytically inactive complexes with ZrIV and 

lanthanide metals [35,119,127]. Our research led to the discovery that azacrown ether 4 is 

capable of accelerating ZrIV-assisted peptide hydrolysis at pH 7.0 - 7.3 (37 - 60 °C) [35]. The 

following is a summary of our major findings. 

 Our first experiment involved 16 dipeptides corresponding to the sequences Xaa-Gly and 

Gly-Xaa [35]. A total of 2 mM of each dipeptide was reacted at ~ neutral pH and 60 °C in either 

10 mM ZrCl4, 19 to 22 mM 4,13-diaza-18-crown-6, or 10 mM ZrCl4 with 19 to 22 mM 4,13-

diaza-18-crown-6. While zirconium(IV)-assisted cleavage was always very low in the absence of 

4,13-diaza-18-crown-6, zirconium hydrolysis of all neutral and negatively charged dipeptides 

was increased by 190% up to 1775% upon addition of 4. Hydrolysis yields ranged from 35% for 

Gly-Leu up to 97% for Gly-Glu. Overall, our data showed that ZrIV/4,13-diaza-18-crown-6 

displayed a marked preference for efficient hydrolysis of peptides containing glycine and amino 

acids with oxygen rich side chains. The position of glycine with respect to the remaining amino 

acid in the dipeptide did not appear to have an effect on hydrolysis yields. While insoluble ZrIV 

precipitates were formed in all of the ZrCl4 reactions, to our surprise, the addition of 4,13-diaza-
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Fig. 1.8. Two reagents affecting ZrIV-assisted peptide hydrolysis. 



   19

18-crown-6 did not decrease the extent of ZrIV precipitation.  

 At pH values > 5.0, Tris (3 in Fig. 1.8) buffer reduces the formation of zirconium 

precipitates while increasing levels of ZrCl4 phosphodiester hydrolysis [119,120]. Accordingly, 

we used Tris to substitute for the azacrown ether in an attempt to further improve hydrolysis 

yields. Interestingly, while 3 helped to reduce ZrIV precipitation, peptide hydrolysis by ZrIV was 

decreased when Tris was added [35]. This observation led us to speculate that hydrolysis of 

peptides by ZrIV/4,13-diaza-18-crown-6 might have a heterogeneous component similar to 

peptide hydrolysis by lanthanide hydroxide gels [64-66,80].  

 The blocked peptide analog AcGly-GlyOMe was studied next (pH 7.0-7.2, 60 °C, 2 mM 

peptide, 10 mM ZrCl4, 20 h) [35]. Although ZrIV/4,13-diaza-18-crown-6 hydrolysis yields were 

90% and 26% for Gly-Gly and AcGly-GlyOMe, respectively, ZrIV-hydrolysis of AcGly-GlyOMe 

was increased by 2500% by the azacrown ether. The ability of ZrIV/4,13-diaza-18-crown-6 to 

hydrolyze Gly-Gly irrespective of the presence of free and/or blocked N- and C-terminal groups 

is significant in light of the fact that, in most biochemical applications, protein hydrolysis 

involves cleavage of internal peptide amide bonds.  

 In order to evaluate ZrIV activity under physiologically relevant conditions, Gly-Glu was 

reacted at 37 °C and pH 7.3 [35]. After 20 h, a total of 39% of the dipeptide was hydrolysed in 

the presence of ZrIV/4,13-diaza-18-crown-6 and the azacrown ether increased levels of ZrIV-

hydrolysis by 550%. Time course experiments were then conducted at 37 °C and 60 °C. At 37 °C 

and pH 7.3, the t1/2 for ZrIV/4,13-diaza-18-crown-6 hydrolysis of Gly-Glu was 36.6+2.7 h. This 

represents a significant rate enhancement in comparison to the average half-life of ~ 200 years 

estimated for spontaneous hydrolysis of unactivated peptide amide bonds under nearly identical 

conditions (pH 6.8-7.0, 37 °C) [38,39]. At pH 7.1 and 60 °C, the t1/2 was 69.3+5.5 h and 5.3+0.1 
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h for ZrIV-hydrolysis of Gly-Glu without and with 4,13-diaza-18-crown-6, respectively. To test 

for catalytic turnover, 10 mM Gly-Glu, 5 mM ZrCl4, and 15 mM of 4,13-diaza-18-crown-6 were 

reacted at pH 7.0 and 60 °C. Yields of free glycine were 56%, 75%, and 83% after 45 h, 94 h, 

and 138 h respectively. (When ZrIV was omitted, there was 0% glycine at 138 h.) Thus, the 

greater than stoichiometric levels of hydrolysis indicated modest levels of catalytic activity. 

 Although 4,13-diaza-18-crown-6 forms stable ZrIV complexes in organic solvents [128], 

interactions between ZrIV and the azacrown ether are likely to be complicated in aqueous 

solutions. This is due to the propensity of ZrIV to form polynuclear polyhydroxo species, 

insoluble gels, and precipitates [123,125]. Indeed, precipitation was observed in all of our 

peptide hydrolysis experiments. Thus, elucidating the precise mechanism through which ZrIV 

promotes peptide hydrolysis will be a challenging task. Nevertheless, we employed 1H NMR to 

obtain preliminary evidence of complex formation between ZrIV and 4,13-diaza-18-crown-6 in 

D2O [35].  

 In summary, 4,13-diaza-18-crown-6 (4 in Fig. 1.8) enhances the rate of zirconium-assisted 

peptide hydrolysis in neutral solutions (pH 7.0 - 7.3; 37 - 60 °C). We found that ZrIV/4,13-diaza-

18-crown-6 displays a preference for cleavage of neutral and negatively charged peptides 

containing glycine and amino acids with oxygen rich side chains. The reaction is moderately 

catalytic and does not have an absolute requirement for the presence of free and/or blocked N- 

and C-terminal groups. Our current research in this area is focused on continued mechanistic 

studies to precisely define the nature of hydrolytically active zirconium species. We are also 

interested in design of second generation ligands that will further enhance the reactivity of 

zirconium(IV). 

 



   21

Copper(II) and Nickel (II) Ions 

 One of the first studies in which the kinetically labile ions CuII and NiII were used to 

promote peptide hydrolysis was published by Meriwether and Westheimer in 1956. At 75 °C, 

Phe-Gly-NH2 was hydrolyzed at detectable levels by CuII at pH 5.0, and then by CuII and NiII at 

higher pH values [63]. (It was evident that NiII became more efficient in promoting hydrolysis as 

reaction pH was raised above 5.0.) At pH 8.6 and 70 °C, Bamann and coworkers were able to 

detect hydrolysis of Gly-Leu after 24 h and 48 h with CuII and NiII, respectively [66]. It can be 

inferred from their results that CuII is more effective than NiII in promoting peptide hydrolysis at 

this pH. Then, in 1965, Grant and Hay conducted a pH profile in which CuII-assisted hydrolysis 

of Gly-Gly was quantitated after 100 h of treatment at 85 °C [67]. Copper(II) displayed 

maximum reactivity at pH 4.2, where it promoted hydrolysis of Gly-Gly in ~ 55% yield. Because 

CuII lowers the pKa value of the peptide amide nitrogen from ~15 to ~4 [62], the notable decrease 

in rate observed at pH values higher than 4.2 was attributed to metal-induced deprotonation of 

the amide nitrogen followed by the formation of a hydrolytically inactive CuII complex (5 in Fig. 

1.9). It is important to note that the pKa of the peptide amide nitrogen is lowered from ~ 15 to 8 

by NiII [62]. Therefore, in comparison to CuII, the efficiency of NiII ion-assisted peptide 

hydrolysis would be expected to begin to decrease at basic rather than at acidic pH values. 
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Fig.  1.9.  Metal-induced deprotonation of a peptide amide nitrogen [67,101].  
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 Copper(II) and nickel(II) ions have also been used to hydrolyze amide bonds in larger 

peptides [48,49,75,87]. Hydrolysis by CuCl2 is specific for the Xaa-Ser(Thr) bond in 

oligopeptides containing Xaa-Ser(Thr)-His sequences (e.g., a yield of ~ 75% was obtained for 

AcPhe-Asp-Lys-Ser-His-Thr-Tyr-NH2 at 62 °C and pH 8 after 24 h [75]). The driving force of 

the copper(II) reaction is thought to be the formation of an extremely stable CuII Ser(Thr)-His-

Xaa complex (6 in Fig. 1.10) [75]. The metal salt NiCl2 hydrolyzes Xaa-Ser bonds in peptides 

containing a Thr-Xaa-Ser-Xaa-His-Lys motif [87] (e.g., in ~ 10% yield for AcLeu-Leu-Gly-Lys-

Val-Thr-Ile-Ala-Gln-Gly-Gly-Val-Leu-Pro-Asn-Ile-Gln-Ala-Val-Leu-Leu-Pro-Lys-Lys-Thr-Glu-

Ser-His-His-Lys-Ala-Lys-Gly-Lys at 37 °C and pH 7.4 after 24 h [49]). Here, the driving force 

is the formation of stable NiII square planar complexes involving cleavage products containing 

the sequence Ser-Xaa-His-Lys [48,49,129]). In the case of copper(II) and nickel(II), the hydroxyl 

group of the serine (or threonine) side chain is thought to facilitate peptide amide bond 

hydrolysis by promoting an N→O acyl rearrangement [48,75,104,105]. As discussed in an earlier 

section of this review article, Yashiro reacted a series of twelve metals salts with the dipeptide 

Gly-Ser and found that CuCl2 produced extremely low levels of hydrolysis in comparison to ten 

of the other metals tested [84]. Because the reaction was run at pH 7.0, the authors attributed 

their results to hydrolytically inactive copper coordination involving the amide nitrogen in the 

peptide backbone of Gly-Ser. To account for efficient CuII-promoted hydrolysis of Xaa-Ser(Thr)-

His sequences, Allen proposed an alternative mechanism in which strong binding of CuII to the 

released amino group prevents a reverse hydrolysis reaction, which would be thermodynamically 

favored in the absence of metal (Fig. 1.10) [105]. 

 Work with small peptides has led to the use of CuII and NiII ions to cleave intact proteins 

[32,33,49,90,95,130]. Horse heart myoglobin was hydrolyzed by CuCl2 at Gln91-Ser92 and 



   23

Ala94-Thr95 in the sequence Gln91-Ser92-His93-Ala94-Thr95-Lys96 (in 27% yield at 50 °C, 

pH 7.0, 3 days [95]). Hydrolysis of denatured IgG antibody has been accomplished with CuCl2 at 

a single Lys-Thr bond in the hinge-region sequence Asp-Lys-Thr-His-Thr (in 73% yield at 62 °C, 

pH 8.2, 24 h [90]). Humphreys and coworkers then utilized CuCl2 to successfully cleave a 

bioengineered γ1 Fab’ fusion protein at the Lys-Ser bond in the sequence Asp-Lys-Ser-His (in ~ 

85% yield at 62 °C, pH 8.0, 15 h [33]). In the case of the metal salt NiCl2, bovine histone 2A was 

hydrolyzed at the Glu-Ser bond in the sequence Thr-Glu-Ser-His-His-Lys (in low yield at 37 °C, 

pH 7.4, 2 days [49]). Kasprzak and coworkers demonstrated that the same hydrolysis reaction 

occurs in histone 2A within living Chinese hamster ovary cells exposed to nickel(II) acetate for 3 

to 7 days. This experiment is significant in that it presents direct evidence that NiII-promoted 

peptide hydrolysis may contribute to nickel-induced toxicity in vivo [130]. In protein hydrolysis 

by CuII and NiII, there is an apparent, strong preference for cleavage of Xaa-Ser and Xaa-Thr 

bonds. The mechanism(s) underlying this chemistry may be related to CuII and NiII peptide 

hydrolysis reactions in which the hydroxyl group of the serine (or threonine) side chain promotes 

an N→O acyl rearrangement [48,75,104,105].  
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Protein Hydrolysis by Copper(II) Complexes 

While CuII ions promote hydrolysis of amide bonds in peptides and proteins, a variety of 

ligands have been employed in an effort to enhance the reactivity of this metal, especially at pH 

values above 4.2 [61,111]. In many cases, the goal has been to design reagents capable of 

facilitating protein hydrolysis under mild conditions. In 1995, Hegg and Burstyn published the 

first example in which a small copper complex was utilized to hydrolyze an intact, folded protein. 

In this study, the macrocycle Cu([9]aneN3)Cl2 (7 in Fig. 1.11) was reacted with bovine serum 

albumin (BSA) in 50 mM N-(2-hydroxyethyl)piperazine-N’-2-ethanesulfonic acid (HEPES) 

buffer. The Cys243-Cys244 and Gln219-Lys220 bonds in BSA were hydrolyzed in ~ 15% overall 

yield after 13 days at pH 7.8 and 50 °C [74]. Alternatively, when the bifunctional buffer sodium 
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Fig. 1.10. In CuII–assisted hydrolysis of Xaa-Ser(Thr)-His sequences, the side chain 
hydroxyl group of Ser(Thr) participates in an N→O acyl rearrangement. Proton transfer 
from the hydroxyl to the deprotonated, copper-bound amide nitrogen could take place 
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bicarbonate was utilized as a substitute for HEPES, the reaction rate was increased dramatically. 

Burstyn hypothesized that sodium bicarbonate acts as a proton transfer agent that speeds up the 

rate determining breakdown of the hydrolytic tetrahedral intermediate (Fig. 1.3). Although 

protein fragments corresponding to cleavage at the Cys243-Cys244 and Gln219-Lys220 bonds 

were initially generated in the presence of sodium bicarbonate, they were subsequently degraded 

in a non-sequence specific fashion into a large number of products.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

O

NHO

H
N

O

N

N N

N

H

H H

N
N

N
N

H

H

H

O

H
N

N

O

N O

O

Br
O

NH

H
N

N
N

N
HH

H

O

N

OHN

N

O
H

O

N
N

N
N

H

H

H

N

N N

H

HH
PS

S
O

NH
O

O

N
H

PS

HN

O

O

N
H

PS

HN

O

O

N
H

8

7

9

10

 
 
Fig. 1.11. Copper(II) ligands used in the hydrolysis of intact proteins [74.94,98].  
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 In a creative attempt to simulate active sites found within natural metalloproteases, Suh 

and coworkers developed a design strategy in which CuII complexes of cyclen are randomly 

attached to hydrophobic, cross-linked polystyrene (PS) [111]. (Hydrophobic microenvironments 

within proteins can lead to transition state stabilization by enhancing polar interactions in 

enzyme-substrate complexes.) As an example, Suh’s group synthesized cyclen-polystyrene 

conjugate 8 shown in Fig. 1.11 [94]. Hydrolysis reactions were conducted in which horse heart 

myoglobin, bovine serum albumin, and bovine serum γ-globulin were treated with the CuII 

complex of 8 in boric acid buffer at 50 °C and pH 9.0 [94]. While bovine serum albumin and γ-

globulin were not appreciably degraded, considerable sequence-specific hydrolysis of myoglobin 

was observed after only 4 h. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-

TOF) MS and Edman degradation analyses indicated that the primary hydrolysis sites were at 

Gln91-Ser92 and Ala94-Thr95, the same bonds hydrolyzed by treatment of horse heart 

myoglobin with CuCl2 [95]. Upon additional incubation in the presence of the CuII complex of 8, 

the myoglobin peptide fragments produced upon initial hydrolysis were further degraded, 

resulting in the formation of multiple, unidentified products [94]. The overall rate of protein 

degradation was then determined by monitoring the disappearance of myoglobin electrophoretic 

bands resolved on SDS-PAGE gels. This analysis showed that the overall degradation of 

myoglobin by the CuII complex of 8 is catalytic (kcat = 0.34 h-1) with a t1/2 of only 2 h at 50 °C 

and pH 9.0. When cross-linked polystyrene was not utilized as a reaction scaffold, hydrolysis of 

myoglobin could not be detected, even after 3 days of treatment with the free CuII cyclen 

complex at 50 °C and pH 7.0 to pH 9.0.  

 In an effort to design a catalyst that could be used to hydrolyze a broad range of protein 

substrates, Suh and coworkers synthesized two cyclen-polystyrene conjugates (9 and 10 in Fig. 
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1.11) in which the central catalytic unit of each is attached to an aldehyde group [98]. Suh 

reasoned that the aldehyde would increase binding of the two conjugates to various proteins 

through the formation of reversible imine bonds with the ε-amino groups of surface lysine 

residues. The CuII complexes of cyclen-polystyrene conjugates 9 and 10 were then reacted with 

horse heart myoglobin, bovine serum albumin, human serum albumin, and chicken egg white 

lysozyme at 50 °C and pH 9.0 to pH 9.5. MALDI-TOF mass spectra revealed that each of the 

four proteins was hydrolyzed at multiple, initial sites. Of the peptide fragments that were 

produced, some were stable, but others were rapidly degraded to unidentified products. (In the 

case of myoglobin, the primary, initial hydrolysis sites were again at Gln91-Ser92 and Ala94-

Thr95.) Overall degradation rates were then monitored by quantitating the decrease in intensity 

of the SDS-PAGE bands of the four protein substrates. These analyses revealed that protein 

degradation by the CuII complexes of cyclen-polystyrene conjugates 9 and 10 was extremely 

rapid: t1/2 values were on the order of minutes and kcat values ranged from (6.0 to 18.0) x 10-4 s-1. 

Copper-assisted cleavage of the protein substrates was much slower in control reactions in which 

a hydrogen atom was used to substitute for the aldehyde groups of 9 and 10. Suh also showed 

that cyclen-polystyrene conjugates 9 and 10 could be recovered and then reused to degrade 

bovine serum albumin. The recovered polymers were able to cleave BSA with nearly identical 

efficiencies in comparison to the freshly prepared polymers. 

Molybdocene Dichloride 

 The first report of successful molybdenum-promoted peptide hydrolysis was published by 

Erxleben in 2005 [52]. (Bamann and coworkers had attempted to react Gly-Leu with MoO4
2- at 

pH 8.6 and 70 °C, but after 72 h, no hydrolysis products could be detected [66].) As an 

alternative, Erxleben chose the organometallic compound molybdocene dichloride (Cp2MoCl2; 
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Cp = η5-cyclopentadienyl). The metal center of Cp2Mo is soft and forms relatively inert 

complexes with the thiolate side chain of cysteine and other soft ligands. Molybdocene 

dichloride was reacted under anaerobic conditions with several cysteine containing di- and 

tripeptides at pH values ranging from 2 to 9 [52]. (In an aqueous environment, the chloride 

ligands of Cp2MoCl2 are rapidly replaced by water, whereas the Cp-Mo bond is resistant to 

protolysis.) Analyses of 1H NMR spectra revealed that the two dipeptides tested (Cys-Gly and 

Gly-Cys) formed stable complexes in which the Cp2Mo2+ unit was bound to the thiolate group 

and to the free amino or free carboxylate group of Cys. Alternatively, the tripeptides glutathione 

(γ-Glu-Cys-Gly; GSH) and Gly-Cys-Gly reacted with Cp2MoCl2 at elevated temperatures to 

release free glycine. At a pD value of 7.4, hydrolysis of GSH was found to proceed in yields 

greater than 10% and 40% after ~ 40 h of treatment at 40 °C and 60 °C, respectively. The 

appearance of free glycine in the 1H NMR spectra was accompanied by the formation of 

equivalent amounts of a stable dipeptide complex corresponding to the formula [Cp2Mo(γ-Glu-

Cys-S,O)]+ (11 in Fig. 1.12). Therefore, stoichiometric rather than catalytic amounts of 

Cp2MoCl2 are required to promote hydrolysis. Notwithstanding, observation of complex 11 

supports a mechanism in which the anchoring thiolate of Cys facilities intramolecular attack of 

the Mo-OH nucleophile at an internal amide carbonyl (Fig. 1.12) [52]. In the case of Gly-Cys-

Gly, analyses of 1H NMR data indicated that free glycine release at 60 °C and pD values  > 7.0 

was the result of an intramolecular aminolysis reaction. Erxleben proposed that chelation of the 

Cp2Mo2+ unit to the deprotonated amide nitrogen and thiolate groups of Cys changed the 

configuration of the Gly-Cys peptide amide bond from trans to cis. This in turn would be 

expected to facilitate nucleophilic attack by the primary amino group of the tripeptide at the 

carbonyl group of the scissile Cys-Gly amide bond [52]. 
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Palladium(II) and Platinum(II)  

 In 1961, Bamann and coworkers reacted Gly-Leu with PdII and PtII at pH 8.6 and 70 °C, 

but after 72 h, no evidence of peptide hydrolysis was observed [66]. Notwithstanding, recent 

pioneering studies by the research groups of Kostić [41-43,70,71,73,76,77,79,81-83,85,86], Zhu 

[88], and Sheldrick [51] have proven palladium(II) and platinum(II) complexes to be extremely 

useful reagents for the sequence-specific hydrolysis of peptides. Although PtII is substitutionally 

inert, PdII is more labile and turnover is possible. In comparison to CeIV, CuII, MoIV, NiII, ZnII, 

and ZrIV, significant rate enhancements over background peptide hydrolysis have been reported. 

The sequence specificity of PdII and PtII complexes is derived from metal coordination to the soft 
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Fig. 1.12. Hydrolysis of GSH by Cp2MoCl2 releases free glycine and the dipeptide 
complex [Cp2Mo(γ-Glu-Cys-S,O)]+  (11) [52]).  
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sulfur atom in the side chains of anchoring cysteine and methionine residues [43,70,71,73], and 

in the case of PdII, to the borderline imidazole nitrogen atom in the side chain of histidine [76,77]. 

Because PtII is a soft Lewis acid, PtII complexes preferentially hydrolyze peptides containing 

cysteine and methionine [93]. Alternatively, PdII is borderline and hydrolyzes peptides containing 

histidine, cysteine, and methionine [93]. In N-acetylated dipeptides of the type 

AcCysMe(His,Met)-Xaa, palladium(II) complexes are specific for hydrolysis of CysMe-Xaa 

[73], Met-Xaa [71], and His-Xaa bonds [76,77]. (The N-terminal amino groups of peptides 

containing fewer than four amino acids must be acetylated in order to avoid the formation of 

hydrolytically inactive chelate complexes in which the N-terminal nitrogen and one or more 

deprotonated amide nitrogens coordinate to palladium [82].) In larger peptides, cleavage by 

[Pd(H2O)4]2+, cis-[Pd(en)(H2O)2]2+, and other PdII complexes occurs at the second amide bond 

upstream from the anchoring residue (i.e., at the X-Y bonds in X-Y-His-Z and X-Y-Met-Z 

sequences, where X, Y, and Z are any noncoordinating amino acids) [82,83]. Alternatively, cis-

[Pt(en)(H2O)2]2+ hydrolyzes peptide amide bonds immediately downstream from the anchoring 

amino acid (i.e., the bond Met-Z in X-Y-Met-Z) [86]. With respect to cis-[Pd(en)(H2O)2]2+ and 

cis-[Pt(en)(H2O)2]2+, the different regioselectivities can be attributed to the relatively labile 

nature of PdII. The “en” ligand in the PdII complex is rapidly replaced by water, whereas it 

remains coordinated to PtII throughout the cleavage reaction [86].  

 Hydrolysis of AcHis-Gly by cis-[Pd(en)(H2O) 2]2+ at pH 1.46 and 60 °C is modestly 

catalytic and proceeds with a half-life of ~ 7 h (kobsd = 0.00166 min-1) [76]. At pH 1.25 and 40 °C, 

the half-lives for hydrolysis of AcMet-Gly treated with cis-[Pd(en)(H2O)2]2+ and 

[Pd(H2O)3(OH)]+ are ~ 32 min (kobsd = 0.022 min-1 ), and  ~ 19 min (kobsd = 0.036 min-1 ), 

respectively [73]. For cis-[Pt(en)(H2O) 2]2+, the half-live of AcMet-Gly hydrolysis at pH 0.94 and 
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40 °C is ~ 25 h (kobsd = 0.00046 min-1 ) [71]. The acidic solutions utilized in these reactions are 

needed to suppress the formation of oligomeric PdII complexes with hydroxo bridges [77] and/or 

the formation of hydrolytically inactive coordination modes involving deprotonated amide 

nitrogens in the peptide backbone [62,73]. (Palladium(II) lowers the pKa value of the peptide 

amide nitrogen from ~ 15 to less than 2 [62].) As a result, hydrolysis yields decrease at higher pH 

values [71,73,76] and are negligible at near neutral pH. Notwithstanding, Kostić and coworkers 

have overcome this obstacle by targeting peptides containing X-Pro-Met and X-Pro-His 

sequences [41]. Proline participates in the formation of tertiary peptide amide bonds that are 

unable to form hydrolytically inactive complexes with PdII and other metals. At pH 7.0 and 

40 °C, Kostić utilized [Pd(H2O)4]2+ to hydrolyze a single Gly-Pro bond in the Gly-Pro-His 

sequence of an N-acetylated undecapeptide. The half-life of the reaction was only 4.2 h [41]. To 

extend the number of sequences selectively cleaved at neutral pH, Kostić synthesized a conjugate 

consisting of a Pd(II) aqua complex tethered to β-cyclodextrin (12 in Fig. 1.13) [85]. 

(Cyclodextrin forms weak complexes with the aromatic side chains of Phe, Trp, and Tyr.) 

Treatment of the nonapeptide peptide bradykinin with 12 for 48 h at pH 7.0 and 60 °C resulted in 

selective hydrolysis of the Ser-Pro bond in the sequence Ser-Pro-Phe. Bradykinin (Arg-Pro-Pro-

Gly-Phe-Ser-Pro-Phe-Arg) contains three X-Pro bonds, only one of which is adjacent to an 

aromatic amino acid.  There was no evidence of hydrolysis at the remaining two proline residues 

in bradykinin [85]. 



   32

 

 

 

 

 

 

 

 

 

 

 

 

Kostić and coworkers have designed a series of palladium(II) and platinum(II) complexes that 

are effective in promoting sequence-specific peptide hydrolysis in nonaqueous solutions [79,81]. 

Their goal was to develop useful tools for structural analyses of problematic, warter-insoluble 

hydrophobic proteins (e.g., membrane proteins) which are difficult to hydrolyze with 

endopeptidases. When N-acetylated dipeptides corresponding to the sequence AcTrp-Xaa were 

treated with cis-[Pt(en)(sol)2]2+ in acetone, hydrolysis of the Trp-Xaa peptide amide bond was 

readily achieved upon the addition of one equivalent of water. In the case of AcTrp-Gly, the 

observed rate constant for hydrolysis (khyd) at 40 °C was 0.30 min-1 [81]. Kostić demonstrated 

that initial interaction between PtII and the dipeptide substrate forms a spiro complex that 

involves bidentate coordination of tryptophan via the C(3) atom of its indole ring and the amide 

carbonyl oxygen (13 in Fig. 1.13) [81]. Water inhibits tryptophan coordination, effectively 

 
 

Pd
OH2H2O

SS

N
H

NH NHX

O

Pt

H2N

H2
N

O

A)

12

+

13

B)

 
 
 

Fig. 1.13. Schematic diagrams of: A) a conjugate consisting of β-cyclodextrin and an 
PdII aqua complex [85]; B) a spiro complex formed between AcTrp-Xaa and cis-
[Pt(en)(sol)2]2+ in acetone, where NHX represents the C-terminal amino acid [81]. 
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preventing peptide hydrolysis from occurring in neat, aqueous solutions. 

 A number of palladium(II) and platinum(II) complexes have been used to hydrolyze 

intact proteins [82,83,86,89,91-93,96]. For example, bovine serum albumin is cleaved by trans-

[Pd(py)2(H2O)2]
2+

at multiple sites including three Xaa-Ser bonds in Xaa-Ser-His sequences (in 

60% yield at 50 °C, pH 4.5, 8 days [92]). Myoglobin is hydrolyzed by cis-[Pd(dtco-

OH)(H2O)2]
2+

 at multiple sites including the Xaa-Ser bonds in Ala57-Ser58-Glu59 and Gln91-

Ser92-His93 sequences (in 39% yield at 60 °C, pH 6.2, 24 h [91]). Cytochrome c is hydrolyzed 

at (i) a single His-Thr bond in the presence of cis-[Pd(en)(H2O)2]
2+

 (in 85% yield at 40 °C, pH 

2.0, 2 days [89]), and at (ii) two Met-Xaa bonds in the presence of cis-[Pt(en)(H2O)2]
2+

 (in 100% 

yield at 40 °C, pH 2.5, 24 h [93]). In a recent study, Kostić treated cis-[Pt(en)(H2O)2]
2+

 with 

cytochrome c at pH 2.5. Microwave irradiation was then utilized to maintain the reaction 

temperature at 60 °C. (Microwave heating is a new method used to accelerate chemical reactions 

through a combination of thermal and nonthermal microwave effects.) As expected, cytochrome 

c was selectively hydrolyzed at two Met-Xaa bonds, but microwave-assisted heating at 60 °C 

approximately doubled the hydrolysis rate in comparison to thermal-assisted heating at the same 

temperature [86]. 

Concluding Remarks 

 Our major objective was to present a summary of significant advances that have 

contributed to the development of metal complexes that hydrolyze unactivated peptides and 

proteins under mild, near physiological conditions of temperature and pH. In our systematic 

review of CeIV, CoII, CoIII, CuII, MoIV, NiII, PdII, PtII, ZnII, and ZrIV, we have described a number 

of complexes that produce outstanding rate enhancements over background hydrolysis. Several 

of these metals were shown to possess one or more of the following attributes: enhanced Lewis 
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acid strength, oxophilicity, the ability to form complexes with high coordination numbers and 

flexible ligand geometries, fast-ligand exchange kinetics, and the capacity to lower the pKa value 

of coordinated water without producing a significant reduction in the pKa of the amide nitrogen 

hydrogen atom. In the case of CuII and NiII ions, the formation of highly stable complexes with 

peptide fragments produced upon hydrolysis was shown to be important. Finally, sequence-

specific hydrolysis of peptides and proteins is often achieved by coordination of the metal to 

anchoring amino acid side chains.  

 Although tremendous progress has been made in CoIII, CuII, PdII and in other metal 

systems, much work remains to be done. New regioselective reagents are needed that efficiently 

catalyze the hydrolysis of amino acid sequences in diverse sets of folded proteins. We envisage 

that future experiments will lead to the development of new synthetic metalloproteases. These 

will serve as versatile biochemical tools for use in a variety of applications ranging from protein 

structural studies to therapuetics. 
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Ac = acetyl 

Ala = alanine 

Arg = arginine 
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Asn = asparagine 

Asp = aspartate 

BSA = bovine serum albumin 

Cp  =  η5-cyclopentadienyl 

cyclen = 1,4,7,10-tetraazacyclododecane 

Cys  = cysteine 

DNA  = deoxyribonucleic acids  

Dtco-OH = dithiacyclooctan-3-ol 

EDTA  = ethylenediaminetetraacetate 

en = ethylenediamine 

ESI  = electrospray ionization 

Et = ethyl 

Gln = glutamine 

Glu  = glutamate 

Gly = glycine 

GSH  = glutathione 

half-life = t1/2   

HEPES  = N-(2-hydroxyethyl)piperazine-N’-2-ethanesulfonic acid  

His  = histidine 

Ile = isoleucine 

Leu = leucine 

Lys = lysine 

MALDI-TOF  = matrix-assisted laser desorption/ionization time-of-flight 
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M = metal 

Me = methyl  

Met  = methionine 

MS = mass spectrometry 

N4  =  four nitrogen donor atoms 

PDF = peptide deformylase 

Phe = phenylalanine 

PNA = peptide nucleic acid 

Pro = proline 

PS  = polystyrene 

py = pyridine 

SDS-PAGE = sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Ser = serine 

sol = coordinated solvent 

TI  = tetrahedral intermediate 

tren = tris(2-aminoethyl)amine 

trien = triethylenetetramine 

Tris  = tris(hydroxymethyl)aminomethane 

Thr = threonine 

Trp = tryptophan 

Tyr = tyrosine 

Val = valine 

Xaa = any amino acid 
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[9]aneN3 =  1,4,7-triazacyclononane 
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Epilogue 

After publication of the preceding Current Organic Chemistry manuscript, several new metal 

complexes were used to hydrolyze peptide and protein amide bonds [1-5]. The pertinent 

literature describing these complexes is summarized below. 

Palladium(II)  

Djuran et al. used the new palladium complexes cis-[Pd(dpa)Cl2] and cis-

[Pd(dpa)(H2O)2]2+ (dpa = the bidentate ligand 2,2’-dipyridylamine) to hydrolyze two dipeptides 

and their N-acetylated peptide analogs [1]. The hydrolysis reactions were investigated by 1H 

NMR spectroscopy. When cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ were allowed to react with 

Met-Gly and His-Gly in the pH range 2.0-2.5 at 25 oC and at 60 oC, no peptide hydrolysis was 

observed. Hydrolytically inactive Pd(II)-intermediates were formed in which the Pd(II) ion was 

bound to the nitrogen atom of the N-terminal dipeptide amino group and to the sulfur atom of 

methionine (in Met-Gly) or to the N3 imidazole nitrogen atom of histidine (in His-Gly). After the 

formation of each of these Pd(II)-peptide intermediates, the dpa ligand was replaced by two 

water molecules. The released dpa ligand was then free to react with unreacted cis-[Pd(dpa)Cl2] 

to form a [Pd(dpa)2]Cl2·4H2O complex. The crystal structure of [Pd(dpa)2]Cl2⋅4H2O was 

confirmed to be square-planar. Because no peptide hydrolysis occurred using Met-Gly and His-

Gly, the N-acetylated dipeptides AcMet-Gly and AcHis-Gly were reacted with cis-

[Pd(dpa)(H2O)2]+2 at 25 and 60 oC and pH 2.0 - 2.5. It was found that 25% of AcMet-Gly was 
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hydrolyzed at 60 oC after 2 h and that a 90% cleavage yield was obtained after 72 h. At 25 oC, 

cleavage was 40% after 10 days. However, AcHis-Gly showed no hydrolysis, presumably due to 

steric hindrance arising from interactions between the two bulky dpa pyridine rings and the 

imidazole ring in the side chain of histidine. 

Iron(III)  

Liu et al. successfully used the diiron(III) complex Fe2(DTPB)-(µ2-O)(µ2-OAc)Cl(BF4)2 

[DTPB = 1,1,4,7,7-pentakis(2’-benzimidazol-2-yl-methyl)triazaheptane, OAc = acetate] to 

promote protein degradation [2]. The five intact, folded proteins hemoglobin (Hb), bovine serum 

albumin (BSA), lysozyme (Lyso), RNase, and Cu,Zn superoxide dismutase (SOD) were reacted 

with Fe2(DTPB)-(µ2-O)(µ2-OAc)Cl(BF4)2 for 48 h at 50 oC in 20 mM HAc-NaAc buffer pH 5.6 

under both aerobic and anaerobic conditions. In both cases, sodium dodecyl sulfate-

polyacrylamide (SDS-PAGE) gel electrophoresis showed progressive degradation of intact Hb, 

BSA, and SOD as the concentration of Fe2(DTPB)-(µ2-O)(µ2-OAc)Cl(BF4)2 was raised. There 

was no relationship between degradation yields and secondary structure content. It was 

suggested that under the anaerobic conditions, the degradation reactions occurred by a hydrolytic 

pathway. Then, the five proteins were partially denatured in 1.9 M guanidinium chloride and 

0.54% 2-mercaptoethanol and were reacted with Fe2(DTPB)-(µ2-O)(µ2-OAc)Cl(BF4)2 to see the 

effects of protein unfolding on degradation patterns. The partly denatured proteins were more 

easily degraded than the folded proteins. The highest hydrolytic yields occurred in the order Hb 

> BSA > Lyso > RNase > SOD as the content of  α-helices decreased, or as the content of β-

sheets or coiled structures increased. Thus, the hydrolysis of these partially denatured proteins 

was affected by secondary structure content.  

Platinum(II) and Copper(II) 
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Zhu et al. used the following Pt(II) and Cu(II) complexes to hydrolyze peptide amide 

bonds in oxidized insulin B chain [3]. Oxidized insulin B was allowed to react with cis-

[Pt(en)(H2O)2]2+ and with [CuL(H2O)]2+  (en = ethylenediamine, L = 2-[bis(2-

aminoethyl)amino]ethanol) at pH 2.5 and 37 oC. The reactions were analyzed by LC-electrospray 

ionization mass spectrometry (LC-ESI-MS) and tandem mass spectrometry (MS/MS). The mass 

spectral data showed that the two complexes were bound to the N-terminal amino group of the 

peptide as well as to the N3 imidazole atoms of His5 and His10. After 14 days of treatment at pH 

2.5 and 40 oC in the presence of 5 mol equiv of cis-[Pt(en)(H2O)2]2+, oxidized insulin B chain 

was hydrolyzed at only one position: His10-Leu11. Platinum(II) complexes are usually specific 

for cleavage of the Met-X peptide amide bond. Thus, this is the first report in which cis-

[Pt(en)(H2O)2]2+ was successfully used to hydrolyze the sequence His-X. Alternatively, when 5 

mol equiv of [CuL(H2O)]2+ was reacted  with insulin B chain at 40 oC and pH 2.5 for 14 days, a 

total of three amide bonds was hydrolyzed: Gly8-Ser9, Asn3-Gln4, and Phe1-Val2. 

Cobalt(III) 

Masuda et al. described peptide hydrolysis by ternary Co(III) complexes of  

[Co(bcmpa)(dp)]- (bcmpa = the tripodal tetradentate ligand bis-N-N-carboxymethyl-L-

phenylalanine, dp =  dipeptide) [4]. Inter-ligand interactions occurred between the N-terminal 

amino hydrogen of the dipeptide and carboxyl oxygen atom of bcmpa and between the α-

hydrogen of bcmpa and the amide carbonyl group of the dipeptide. In the case of dipeptides with 

a C-terminal aromatic side chain, a CH-π inter-ligand interaction occurred between the aromatic 

ring and the α-hydrogen of bcmpa. The Co(III) bcmpa complex was allowed to react with 

dipeptides containing glycine at the N-terminal position. After 3 h of treatment at 40 oC and pH 

9.0, the yields of the hydrolysis product [Co(bcmpa)](gly)]- were determined by HPLC. The 
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dipeptides Gly-Gly and Gly-Ala were hydrolyzed more readily than Gly-Leu and Gly-Val. Thus, 

dipeptides with a bulky C-terminus gave only poor yields and when an aromatic side chain was 

present (e.g., in Gly-Phe) there was no hydrolysis. Hydrophobic interactions between the 

benzene ring of bcmpa and the C-terminal aromatic side chain of the dipeptide were thought to 

inhibit the approach of OH- and prevent peptide cleavage.  

Nickel(II) 

In experiments conducted by Bal et al., the sequence AcThr-Glu-Thr-His-His-Lys-NH2 

was allowed to react with Ni(NO3)2 at pH 9.5 and 25 oC [5]. The rate of hydrolysis of this 

peptide was higher in comparison to hydrolysis of the human histone H2A hexapeptide sequence 

AcThr-Glu-Ser-His-His-Lys-NH2: the half-life of AcThr-Glu-Thr-His-His-Lys-NH2 was 29 h and 

that of its serine analog was 96 h. The pKa of formation of a four-nitrogen square-planar Ni(II) 

complex with the threonine peptide was lower by 0.38 log units than that of the serine analog. 

This was thought to arise from additional shielding of amide nitrogen from water provided by 

Thr side chain methyl group.  
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CHAPTER II 
 

Zirconium(IV)-Assisted Hydrolysis of the Dipeptide Glycylglycine and its Blocked 
Dipeptide Analogs 

 
(This chapter was written by Miki Kassai with assistance from Prof. Kathryn B. Grant. The 
fluorescamine-based microplate assay was developed by Sowmya Patthabi. Positional scanning 
experiments were conducted by Dr. Tjaša Bantan-Polak. The blocked dipeptide analogs AcGG, 
AcGGOMe, and GGOMe were synthesized by Dr. R. Gnana Ravi. All other experiments were 
performed by Miki Kassai.) 
 

Abstract  

 Zirconium(IV)-assisted hydrolysis of AcGly-Gly was analyzed using a microplate reader 

to record the fluorescence produced by the reaction of fluorescamine with amino acids released 

upon cleavage of the peptide amide bond. Our experiments showed that the highest relative 

fluorescent intensity values were observed between pH 4.4 and 4.7 and increased as a function of 

increasing temperature (37 °C to 60 °C) and increasing ZrIV concentration (0.2 mM to 20 mM). 

At pH values above 5.0, decreased hydrolysis yields were accompanied by increasing levels of 

ZrIV precipitation. HPLC and electrospray ionization mass spectrometry were then used to 

identify hydrolysis products. It was apparent that ZrIV cleaved all of the amide bonds and/or ester 

linkages in Gly-Gly and in the N- and/or C- blocked peptide analogs AcGly-Gly, AcGly-

GlyOMe, and Gly-GlyOMe. We then attempted to enhance the reactivity of ZrIV at physiological 

pH by addition of the solubilizing reagents α, β, γ-cyclodextrin and Brij 35. However, we were 

unable to prevent ZrIV precipitation and were unable to increase hydrolysis yields. 
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Introduction 

Early research in our laboratory was focused on creating a positional scanning-based 

combinatorial method to enable rapid identification and characterization of new metal ions and 

complexes capable of hydrolyzing the peptide amide bond under non-denaturing conditions of 

temperature and pH. The first step was to develop and optimize a microplate assay to detect the 

fluorescence produced upon reaction of fluorescamine with the primary amino groups of amino 

acids liberated upon metal-assisted hydrolysis of the peptide amide bond [1,2]. Fluorescamine is 

a well-established fluorophore used for the quantitative determination of amino acids, peptides, 

and proteins [3-5]. It is intrinsically nonfluorescent, but at room temperature reacts in seconds 

with primary aliphatic amines to produce highly fluorescence derivatives (λex = 381 nm, λem = 

470 nm; Fig. 2.1). Thus, to develop a model system to produce cleaved peptide fragments that 

could be visualized with fluorescamine, Sowmya Patthabi reacted the acetylated dipeptides 

AcGly-Gly and AcMet-Gly with K2[PdCl4] under conditions that promote sequence-specific 

peptide hydrolysis adjacent to methionine residues (4 mM peptide, 10 mM PdII, 100 mM TFA 

pH 2.1) [1,6]. The peptide solutions were kept at 45 °C for 20 h, after which the palladium was 

precipitated out by the addition of ethanedithiol. In the control reactions, metal solutions were 

replaced by water. Aliquots taken at t = 0 h and t = 20 h were then transferred to the wells of a 

microplate, treated with fluorescamine, and the 8 samples were quantitated in a FLUOstar 

microplate reader in under 60 s. Our results showed that hydrolysis was specific for AcMet-Gly 

and was easily detected by the fluorescamine microplate assay with an excellent signal to noise 

ratio. There was a sharp increase in fluorescence as a function of time in the AcMet-Gly reaction 

relative to AcGly-Gly and relative to the control reactions conducted in the absence of 

K2[PdCl4]. 
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After the microplate assay had been optimized, Dr. Tjaša Bantan-Polak synthesized a 

spatially addressed positional scanning peptide library containing 121 acetylated dipeptides in a 

total of 22 library samples [7]. The 22 samples were then reacted with a number of metals 

including PdII and ZrIV [7], after which the hydrolyzed peptides were identified by treatment with 

of the samples with fluorescamine and subsequent quantitation in the microplate reader. Because 

the samples in the library were spatially addressed, the screening automatically identified the 

original amino acid sequences of the hydrolyzed peptides within the library [7]. Thus, the 

fluorescamine microplate assay permitted the rapid detection of peptide cleavage within all 

positional scanning library samples and rapid screening of numerous metal salts. In the case of 

ZrIV, preliminary positional scanning data gave encouraging results, indicating that the 

commercially available salt ZrCl4 was capable of hydrolyzing acetylated dipeptides in the library, 

with a strong preference for glycine at the first amino acid position (Fig. 2.2). This led to the 

following study of glycylglycine (GG), the acetylated dipeptide AcGG, and of blocked dipeptide 

analogs GGOMe and AcGGOMe. The goal of this work was to optimize pH, temperature, and 
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Fig. 2.1. A primary amino group released upon metal-assisted hydrolysis of an acetylated 
dipeptide reacts with fluorescamine. (R1 and R2 represent amino acid side chains.)  
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other reaction conditions with the aim of enhancing yields of zirconium(IV)-assisted peptide 

hydrolysis under physiologically relevant conditions of temperature and pH. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.2. Fluorescamine-based microplate assay: a total of 2 mM of each of 22 individual positional scanning library 
“samples” was reacted in the presence of 10 mM ZrCl4 for 40 h at pH 7.0 and 60° C. The hydrolysis reactions were 
transferred to a microplate and treated with fluorescamine. The relative fluorescence intensities shown above were 
then recorded in a fluorescence microplate reader. The sub-libraries OX and XO were comprised of 11 "samples" 
that each contain 11 acetylated dipeptides in which position O is fixed and X represents equimolar quantities of the 
11 amino acids Arg, Asn, Gly, Glu, Gln, Leu, Met, Phe, Ser, Thr, and Tyr. The total number of acetylated dipeptides 
in the positional scanning library was 121. To reduce background fluorescence, relative fluorescence intensities at t 
= 0 h were subtracted from relative fluorescence intensities at t = 40 h. 
 

Material and Methods 

All reagents were of the highest available purity. Distilled, deionized water was utilized 

in the preparation of all buffers. Metal solutions were freshly prepared in all cases. 

Dimethylaminoazobenzenesulfonyl chloride (dabsyl chloride, DABS-Cl) and fluorescamine 

were obtained from Molecular Probes. Sodium bicarbonate, sodium phosphate monobasic and 

dibasic salts, N,N-dimethylformamide (DMF), glycine (Gly), glycylglycine (Gly-Gly), and 

α−, β−, and γ-cyclodextrins were purchased from Sigma. HPLC standard glycine methyl ester 

hydrochloride (H-Gly-OMe•HCl) was obtained from Novabiochem. HPLC grade acetone was 
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from EMD and Optima grade acetonitrile was from Caledon. Trifluoroacetic acid (TFA) was 

obtained from Halocarbon, and molecular biology grade ethylenediaminetetraacetic acid 

disodium salt (EDTA) was from the Eastman Kodak Company. Other chemicals, including 

zirconium chloride (ZrCl4), Brij 35 and 1,2-ethanedithiol (EDT), were purchased from the 

Aldrich Chemical Company. Known compounds N-acetylglycylglycine (AcGly-Gly), N-

acetylglycylglycine methyl ester (AcGly-GlyOMe), and glycine methyl ester (Gly-GlyOMe) 

were synthesized by Dr. R. Gnana Ravi.  

Peptide Hydrolysis Reactions 

 In a typical reaction, a total of 4 µL of acetylated AcGly-Gly (100 mM stock 

concentration) in deionized water was allowed to react at 60 °C in the absence and presence of 

ZrCl4. (The reaction pH was pre-adjusted by adding NaOH.) At specific time intervals, 70 µL 

aliquots of the reaction were quenched at room temperature by a 60 min treatment with EDTA 

pH 8.0 (50 mM final concentration). In control reactions, ZrCl4 was substituted by equivalent 

volumes of pH-adjusted water. 

Fluorometric Microplate Detection of Peptide Hydrolysis 

A total of 4 µL of hydrolysis reaction, 90 µL of 0.1 % (wt/v) fluorescamine dissolved in 

acetonitrile, 15 µL of 100 mM sodium borate buffer pH 8.0, and 191 µL of water were 

transferred to the wells of a flat-bottomed microplate (COSTAR 96). The solutions were allowed 

to react at room temperature for 5 min after which the microplate was read for fluorescence in a 

FLUOstar microplate reader equipped with a high energy xenon flash lamp (BMG Lab 

Technologies; 380 nm excitation filter, 520 nm emission filter). To correct for background 

fluorescence, blanks consisting of water (to substitute for amino acid), buffer, and fluorescamine 

dissolved in acetonitrile were loaded into microplate wells. In general, relative fluorescence 
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intensity (RFI) values corresponding to each amino acid were expressed as a percent relative to 

the amino acid producing the highest fluorescence intensity. 

HPLC Analysis of Peptide Hydrolysis Reaction Products 

Amino acid products of the ZrIV-assisted peptide hydrolysis reactions were identified by 

HPLC analysis of their dabsylated derivatives. In a total volume of 120 µL, a 45 µL aliquot of 

each hydrolysis reaction was treated with 60 µL of 25 mM dabsyl chloride in acetone in the 

presence of 15 µL of 1 M sodium bicarbonate buffer pH 10. Solutions were allowed to reacte at 

70 °C for 15 min, chilled on ice, and diluted with 120 µL of ethanol. Twenty µL of each sample 

were analyzed on a Beckman System Gold High Performance Liquid Chromatograph (HPLC) 

system equipped with a Varian MICROSORB-MV™ C18 5 µm, 100 Å, 4.6 x 250 mm reversed-

phase column. Using gradient elution (Table 2.1), separations were conducted at 50 °C with a 

flow rate of 1 mL/min of mobile phase A (2% DMF in 20 mM sodium phosphate buffer pH 6.5), 

and of mobile phase B (6% DMF in acetonitrile). Dabsylated hydrolysis products were detected 

by UV absorption at 466 nm and their identities were confirmed by comparison of retention 

times to corresponding dabsylated amino acid standards. Appropriate dabsylated standards were 

then included in the reaction mixtures and were shown to enhance HPLC peaks corresponding to 

hydrolysis products.  

Table 2.1: Reversed-phase HPLC gradient elution scheme 
 Time (min) Mobile phase A (%) Mobile phase B (%) 

 0 80 20 
 25 55 45 
 35 20 80 
 40 80 20 
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Results and Discussion 

The effects of temperature and pH were studied first. Hydrolysis of 1 mM AcGly-Gly in 

5 mM ZrCl4 was carried out at 45 °C and 60 °C in unbuffered solutions adjusted to pH 3.3, 3.8, 

5.5, and 7.1 at 25 °C. In control reactions, ZrCl4 was substituted by an equivalent volume of pH 

adjusted water. Aliquots taken from each sample at t = 0 h, t = 20 h, and t = 40 h were transferred 

to 48 wells of a 96 well microplate. A final concentration of 50 mM EDTA pH 8.0 was added in 

order to minimize the influence of zirconium on subsequent derivatization reactions. Following 

the addition of fluorescamine in acetonitrile, the microplate was quantitated in a fluorescence 

microplate reader. As can be seen in Fig. 2.3, AcGly-Gly produced significant levels of 

fluorescence which increased with time and temperature only when ZrIV was present. We 

hypothesized that this phenomenon might arise from the hydrolytic release of a primary amine 

group, most likely free glycine. Maximal reactivity occurred at pH values of 3.8 and 5.5, with 

notable levels of fluorescence under nondenaturing conditions (pH 7.1, 45 °C). To estimate 

percent conversion, a comparison to a glycine standard indicated that 1 mM AcGly-Gly, 5 mM 

ZrCl4 at pH 3.8, 60 °C released one mole equivalent of glycine after 40 h (data not shown). In 

the optimal pH range (3.8 - 5.5), solutions of ZrCl4 are predominated by a soluble cationic 

polynuclear polyhydroxo species [8]. It is therefore conceivable for hydrolysis to proceed by 

attack of a zirconium-coordinated hydroxide on the peptide amide carbonyl. Zirconium 

hydroxide is known to precipitate in aqueous solutions greater than pH 5.0, an observation that is 

in agreement with our data: we observed a substantial increase in the degree of zirconium(IV) 

precipitation and a substantial decrease in hydrolysis yields as pH values were raised above the 

optimal pH range (3.8 - 5.5).  
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Fig. 2.3. Fluorescamine-based microplate assay: relative fluorescence intensities produced by reaction aliquots taken 
at t = 0 h, t = 20 h, and t = 40 h in which 1 mM of the acetylated dipeptide AcGly-Gly was treated at 45 °C and at 60 
°C in the presence and absence of 5 mM ZrCl4. Parallel reactions in which ZrCl4 was substituted by equivalent 
volumes of water appear to the immediate right of each ZrCl4  reaction. 
 

Fig. 2.4. A primary amino group released upon metal-assisted hydrolysis of dipeptide Gly-Gly reacts with dabsyl 
chloride. The resulting dabsylated hydrolysis product is detected by UV absorption at 466 nm. 
 

The presence of free glycine was subsequently confirmed by reversed-phase HPLC 

analysis in which peptide hydrolysis products were derivatized with dabsyl chloride (Fig. 2.4).  
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For example, in the AcGly-Gly reaction treated with ZrCl4 for 40 h at 60 °C and pH 5, a 

major, dabsylated peptide hydrolysis product was observed for which the HPLC retention time of 

a dabsyl derivatized glycine standard was is exact agreement (Fig. 2.5, chromatogram B). In the 

same reaction, a trace dabsylated hydrolysis product was observed for which the HPLC retention 

time of a dabsyl derivatized glycylglycine standard was is exact agreement (Fig. 2.5, 

chromatogram B). To confirm the peak assignments, the dabsylated hydrolysis reaction at t = 40 

h (chromatogram B) was spiked with dabsylated glycine to produce chromatogram C and spiked 

with dabsylated glycylglycine to produce chromatogram D (Fig. 2.5). (There was no peak for 

C 
t = 40 h + 
dabsylated Gly 

D
t = 40 h +  
dabsylated Gly-Gly 

A t = 0 h  B t = 40 h  

Gly 

Gly-Gly 

Fig. 2.5. Representative HPLC chromatograms of an acetylated peptide hydrolysis reaction 
(1 mM AcGly-Gly, 5 mM ZrCl4, 60 °C, pH 5) dabsylated at two time points: A) t = 0 h, B) t 
= 40 h. The peaks corresponding to dabsylated hydrolysis product Gly and dabsylated Gly-
Gly are identified; C) aliquot at t = 40 h is spiked with a dabsylated Gly standard; D) aliquot 
at t = 40 h is spiked with a dabsylated Gly-Gly standard. 
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glycine at t = 0 h as seen in Fig. 2.5, chromatogram A.) Thus, in chromatogram C, the major, 

putative glycine peak has been enhanced upon addition of the dabsylated glycine standard, 

whereas in chromatogram D, the trace, putative glycylglycine peak has been enhanced by the 

glycylglycine standard. Therefore, we can conclude that ZrIV has hydrolyzed AcGly-Gly to 

produce glycine as a major product and glycylglycine as a trace hydrolysis product. To our 

knowledge, this HPLC data represented the first direct evidence of successful, zirconium-

assisted hydrolysis of an acetylated dipeptide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The preliminary pH profile conducted above indicated that zirconium(IV) effected 

maximum levels of amide bond hydrolysis at pH values between 3.8 and 5.5. In order to better 
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Fig. 2.6. Fluorescamine-based microplate assay: relative fluorescence intensities produced 
by reaction aliquots taken at t = 0 h, t = 24 h, t = 48 h, and t  = 72 h in which 1 mM of the 
acetylated dipeptide AcGly-Gly was reacted at 37 °C, 45 °C and at 60 °C in the presence and 
absence of 5 mM ZrCl4. Parallel reactions in which ZrCl4 was substituted for by an 
equivalent volume of water appear to the immediate right of each ZrCl4  reaction. 
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access the versatility of zirconium(IV), we extended our profile to include several additional 

measurements. Hydrolysis of 1 mM of the acetylated dipeptide AcGly-Gly in 5 mM ZrCl4 was 

carried out at 37 °C, 45 °C, and 60 °C in unbuffered solutions in which pH values were increased 

in smaller increments ranging from 3.6 to pH 7.5. (The reported pH values were an average of 

pre- and post-reaction measurements.) In control reactions, ZrCl4 was substituted by an 

equivalent volume of pH adjusted water. Aliquots were taken from each sample at 0 h, 24 h, 48 h, 

and 72 h time points and were transferred to the wells of a microplate. A final concentration of 

50 mM EDTA pH 8.0 was then added in order to minimize the influence of zirconium on 

subsequent derivatization. Following the addition of fluorescamine, a microplate containing the 

reactions was quantitated using the fluorescence microplate reader. Again, AcGly-Gly produced 

significant levels of fluorescence which increased with time and temperature only when ZrIV was 

present (Fig. 2.6). The highest fluorescence intensities were observed at pH values between 4.4 

and 4.7 with maximal reactivity occurring at pH 4.4 and 60 oC. The fluorescence intensity at all 

temperatures was diminished as the pH was increased above pH 4.4, presumably due to the 

formation of insoluble ZrIV precipitates: as in our previous pH profile, all of our zirconium(IV) 

hydrolysis reactions became more and more turbid as reaction pH was raised. The presence of 

significant amounts free Gly in the zirconium(IV)–assisted peptide hydrolysis reactions was 

subsequently confirmed by HPLC analysis of dabsylated hydrolysis products. It is important to 

note that measurable, but low levels of fluorescence were produced at physiological temperature 

(37 °C) at pH values ranging from 3.9 to 6.0. 

In our next experiment, the acetylated dipeptide AcGly-Gly in deionized water reacted 

with 5, 10, 20 mM ZrCl4 for 0 h, 24 h, and 48 h at 60 °C. The final pH was about 3.5. As can be 

seen in Fig. 2.7, AcGly-Gly showed an increase in fluorescence as a function of time only when 
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ZrIV was present. As expected, the relative fluorescence increased as the concentration of ZrCl4 

was increased. After 48 h, the RFI produced by 5 mM of ZrIV was about 75%, whereas the RFI 

was 100% when 20 mM ZrCl4 was reacted with 1 mM AcGly-Gly for 48 h. There was minimum 

fluorescence observed in the absence of ZrIV.  

 

 

 

 

 

 

 

 

 

 

 

 

We further changed peptide to metal ratio by reacting AcGly-Gly (1 mM) with 5, 2, 1, 

0.5, and 0.2 mM ZrCl4 at 60 oC. The final pH was 4.5. According to Fig. 2.8, the results showed 

that 5 mM ZrIV produced the highest fluorescent intensity. While a peptide to metal ratio of 5:1 

(0.2 mM ZrCl4) showed almost no hydrolysis even after 48 h, a time-dependant increase in 

fluorescence could be detected by using concentrations of ZrIV as low as 0.5 M. (At the peptide 

to metal ratio of 5:1, it is conceivable that hydrolysis may have been detected if the reaction time 

had been extended beyond 48 h.) 
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Fig. 2.7. Fluorescamine-based microplate assay: relative fluorescence intensities produced by reaction 
aliquots taken at t = 0 h, t = 24 h, and t = 48 h, in which 1 mM of the acetylated dipeptide AcGly-Gly 
was treated at 60 °C in the presence and absence of 5 mM, 10 mM, and 20 mM ZrCl4. Parallel reactions 
in which ZrCl4 was substituted for by an equivalent volume of water appear to the immediate right of 
each ZrCl4  reaction. 
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 Table 2.2: Zirconium(IV)-assisted hydrolysis of dipeptides, and blocked peptide analogs: 
HPLC analysis of product yields 

  
  
 Peptides (1 mM): mM Product: 
  

 
pH Gly X XX 

      
 GG 4.7 1.2 na 0.6  (GG) 
 AcGG 4.8 0.4 na 0.1  (GG) 
 GGOMe 4.7 na 0.7 (G, GOMe) 0.4  (GG, GGOMe) 
 AcGGOMe 4.9 na 0.6 (G, GOMe) 0.2  (GG, GGOMe) 
      
  

   Note. All peptides were reacted at a final concentration of 1 mM in the presence of 5 mM 
ZrCl4 (40 h, 60 °C). Hydrolysis products were derivatized with dabsyl chloride, resolved by 
HPLC, and identified by spiking with dabsylated amino acid standards. Reaction yields were 
then estimated by comparing HPLC peak heights to appropriate standard curves. Not 
determined is indicated by nd. Not applicable is indicated by na. Identities of products X and XX 
are indicated in parentheses. Because G and GOMe possess the same HPLC retention time, 
their yields are reported together. Because GG and GGOMe possess the same HPLC retention 
time, their yields are reported together. 

  

 

Fig. 2.8. Fluorescamine-based microplate assay: relative fluorescence intensities produced by 
reaction aliquots taken at t = 0 h, t = 24 h, and t = 48 h, in which 1 mM of the acetylated dipeptide 
AcGly-Gly was treated at 60 °C in the presence and absence of 5 mM, 2 mM, 1 mM, 0.5 mM and 
0.2 mM ZrCl4, respectively. Parallel reactions in which ZrCl4 was substituted for by an equivalent 
volume of water appear to the immediate right of each ZrCl4  reaction. 
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Our previous experiments were limited to the study of the acetylated dipeptide AcGly-

Gly. We therefore conducted additional hydrolysis reactions in which we treated 1 mM of the 

dipeptide Gly-Gly and 1 mM of the blocked peptide analogs AcGly-Gly, AcGly-GlyOMe, Gly-

GlyOMe with 5 mM ZrCl4 (60 °C, 40 h, pH 4.7 to 4.9). Subsequent analyses by HPLC and/or by 

electrospray ionization (ESI) mass spectrometry demonstrated that all of the amide and ester 

linkages in Gly-Gly and in the blocked peptide analogs were hydrolyzed by ZrIV. Representative 

hydrolysis yields based on the total mM of free amino acid and peptide released are shown in 

Table 2.2. (Essentially no hydrolysis was observed for negative controls in which ZrIV was 

104.9 
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76.0 GlyOMe 

89.9 

90.8 

AcGly 
117.9 196.8 
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Fig. 2.9. Representative ESI mass spectrum of a zirconium(IV)-assisted peptide hydrolysis 
reaction (1 mM AcGly-GlyOMe, 5 mM ZrCl4, t = 40 h, pH 4.7, 60 °C). 



   71

substituted by equivalent volumes of water; data not shown.) A representative ESI mass spectrum 

is in Fig. 2.9.  

It is important to note that zirconium(IV) hydrolyzes GG and the peptide analogs AcGG, 

GGOMe, and AcGGOMe irrespective of the presence of free and blocked N-terminal and C-

terminal groups. This is significant in light of the fact that certain CoIII [9] and CeIV [10,11] 

complexes require a free N-terminal amino group to effect peptide hydrolysis. Furthermore, 

many PdII and PtII complexes have limitations which involve an absolute requirement for a 

blocked N-terminus [12].  
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Fig. 2.10. Fluorescamine-based microplate assay: relative fluorescence intensities produced by reaction 
aliquots taken at t = 0 h, t = 20 h, and t = 40 h in which 1 mM of the acetylated dipeptide AcGly-Gly 
was treated at 60 °C in the presence and absence of 5 mM ZrCl4 and 0.5 mM of α−, β−, γ-cyclodextrin 
or of Brij 35. Parallel reactions in which ZrCl4 was substituted for by an equivalent volume of water 
appear to the immediate right of each ZrCl4  reaction.
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In the pH profiles described in this chapter, we observed a significant increase in the 

degree of zirconium(IV) precipitation as reaction pH was increased. This was accompanied by a 

significant decrease in peptide hydrolysis yields. Therefore, the goal of our next experiment was 

to attempt to enhance the reactivity of ZrIV by utilizing Brij micelles as well as α-,  β-, and γ-

cyclodextrin (CD) as solubilizing reagents. Komiyama had successfully employed  γ-

cyclodextrin to solubilize CeIV and was able to achieve homogeneous hydrolysis of the 

dipeptides Gly-Phe in 39% yield after 24 h at pH 8.0 and 60 oC [11]. Moss et al. used Brij 

micelles in thorium(IV) phosphodiester hydrolysis at pH 7.0 and 37 oC and reported 2.8 billion-

fold acceleration in the hydrolysis of bis(p-nitrophenyl)phosphate compared to the unanalyzed 

reaction in the absence of thorium(IV) [13]. Therefore, we reasoned that the use of solubilizing 

reagents such as α−, β−,  and γ-cyclodextrin and Brij 35 might help to dissolve ZrIV precipitates 

and increase hydrolysis yields at mildly acidic to neutral pH values. We accordingly added 5 mM 

of α−, β−, and γ-cyclodextrins and of Brij 35 to 50 mM stock solutions of ZrCl4. The dipeptide 

AcGly-Gly was then reacted in the absence and presence of 5 mM ZrCl4 and 0.5 mM of each 

solubilizing agent at pH values ranging from 3.9 to 6.8. We expected to see a reduction in 

precipitation and an improvement in hydrolysis yields at high pH values, especially in the case of 

γ-cyclodextrin, which should have prevented the precipitation of Zr(OH)4 due to its relatively 

large radius. However, our results showed zirconium precipitation was unaffected and that no 

significant improvements in hydrolysis were produced by the solubilizing agents tested (Fig. 

2.10).  

Conclusion 

 In summary, we have shown that fluorescamine detects amino acids liberated upon ZrIV-

assisted hydrolysis of AcGly-Gly and that ZrIV is capable of hydrolyzing peptides under 
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relatively mild conditions. A preliminary pH profile conducted at 45 oC and 60 oC showed that 

the highest relative fluorescent intensity values were observed between pH 3.8 and 5.5. When the 

pH approached 7, the hydrolysis yields were decreased and amounts of zirconium precipitation 

were increased proportionately. The hydrolysis products were then dabsylated with DABS-Cl 

and identified by HPLC. This analysis confirmed that AcGly-Gly was hydrolyzed by 

zirconium(IV) to release glycine and Gly-Gly as major and minor hydrolysis products, 

respectively. In a second pH profile, we ran zirconium-assisted peptide hydrolysis reactions at 37 

oC, 45 oC and 60 oC.  While the highest levels of fluorescence were observed at pH values 

ranging from 4.4 to 4.7, it is important to note that zirconium(IV) was indeed capable of 

hydrolyzing acetylated peptides at physiological temperature (37 oC), even though the yields 

were relatively low. (Our optimal reactions conditions in this experiment were 1 mM acetylated 

peptide hydrolyzed in the presence of 5 mM ZrCl4 at 60 oC and pH 4.4 for 48 h.) We then 

demonstrated that hydrolysis yields could be improved by increasing the concentration of ZrIV 

from 0.2 mM up to 20 mM. HPLC and electrospray ionization mass spectrometry were utilized 

to show that all of the peptide amide bonds and/or ester linkages in Gly-Gly and in the N- and/or 

C- blocked peptide analogs AcGly-Gly, AcGly-GlyOMe, and Gly-GlyOMe could be hydrolyzed 

by ZrIV. Thus, it was apparent that ZrIV-assisted peptide hydrolysis was not significantly affected 

by the presence of free and/or blocked N-terminal and C-terminal groups. We were also 

interested in enhancing the reactivity of ZrIV by reducing its precipitation at physiological pH. 

The solubilizing reagents α, β, γ-cyclodextrin and Brij 35 were used for this purpose, but at near 

neutral pH, they were unable to prevent the formation of zirconium precipitates and were unable 

to increase peptide hydrolysis yields. 
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Abbreviations 

AcMet-Gly  = N-acetylmethylglycine 

AcGly-Gly  = N-acetylglycylglycine  

AcGly-GlyOMe = N-acetylglycylglycine methyl ester 

CD    = cyclodextrin 

DABS-Cl  = dabsyl chloride, dimethylaminoazobenzenesulfonyl chloride 

DMF   = N,N-dimethylformamide 

EDT   = 1,2-ethanedithiol 

EDTA   = ethylenediaminetetraacetic acid disodium salt 

Gly   = glycine 

Gly-Gly  = glycylglycine 

GlyOMe  = glycine methyl ester 

HPLC   = high performance liquid chromatography  

TFA   = trifluoroacetic acid 

RFI   = relative fluorescence intensity  
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CHAPTER III 

Unprcedented Acceleration of Zirconium(IV)-Assisted Peptide Hydrolysis at Neutral pH 

(This chapter is verbatim as it appears in Kassai, M.; Ravi, R. G.; Shealy, S. J.; Grant, K. B. 
Inorganic Chemistry 2004, 43, 6130-6132. The syntheses of acetylated dipeptides were 
conducted by Dr. R. Gnana Ravi. Mrs. Sarah S. Capeda conducted the characterization of the 
Zr(IV)-complex by mass spectroscopy (data not shown). All other experiments were performed 
by Miki Kassai and the manuscript was written by Prof. Kathryn B. Grant with assistant from 
Miki Kassai.)  
 
Abstract  

4,13-Diaza-18-crown-6 substantially increases the rate of zirconium(IV) hydrolysis of 

unactivated peptide amide bonds under near physiological  conditions of temperature and pH. In 

the presence of this azacrown ether, ZrCl4 efficiently hydrolyses both neutral and negatively 

charged peptides (pH 7.0 - 7.3, 37 - 60 oC). 

Introduction 

The design and synthesis of metal complexes that hydrolyze peptide amide bonds under 

nondenaturing conditions of temperature and pH has become an area of intensive study. These 

reagents show great promise for use in protein bioengineering and protein structural studies, and 

might one day lead to the development of new and powerful therapeutic agents.  Interest has 

focused on metal ions and/or complexes of CeIV, CoIII, CuII, NiII, PdII, PtII, and ZnII, which have 

been used to effect hydrolytic cleavage of unactivated amide bonds in small peptides.1 In the 

case of CuII, CoIII, NiII, and PdII, intact proteins have also been cleaved.1f,g,h, 2 Although efficient 

hydrolysis is sometimes accomplished under physiologically relevant conditions ( ~ pH 7.0, 

37 °C),1c,h,i, 2b,d low pH and/or elevated temperatures are often required.1a,b,d-g,j, 2a,c There is now a 

growing need to discover optimal metal ions and complexes that target diverse amino acid
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sequences.  

The early transition metal zirconium(IV) has enhanced Lewis acid strength imparted by 

its stable +4 oxidation state, enabling ZrIV ions to efficiently hydrolyze DNA and activated 

phosphodiesters.3 It should also be possible for ZrIV to effect efficient hydrolysis of unactivated 

peptide amide bonds. Because ZrIV is oxophilic and preferentially forms complexes with high 

coordination numbers,4 we envisage that this metal center should be capable of coordinating an 

amide carbonyl oxygen in the peptide backbone (activating the carbon toward nucleophilic 

attack), while simultaneously delivering a hydroxide nucleophile to the scissile amide bond. (The 

pKa values of ZrIV bound water molecules are < 0.6, and as a result, Zr-OH readily exists in both 

acidic and neutral media.5) The preference of ZrIV for oxygen should avoid hydrolytically 

inactive peptide amide nitrogen coordination at neutral pH1a,d Furthermore, the fast-ligand 

exchange kinetics characteristic of ZrIV 6 should facilitate catalytic turnover by promoting release 

of the hydroxide nucleophile at the scissile amide bond and release of coordinated peptide 

hydrolysis products. Despite the numerous advantages of ZrIV, evidence of efficient peptide 

hydrolysis by this metal center is lacking.7  

 In aqueous solutions with H+ concentrations of < 0.5 M, ZrIV ions form an octanuclear  

[Zr8(OH)20(H2O)24]12+ species,6 whereas at pH values above 5.0, the production of insoluble gels 

and precipitates3b,8 is thought to substantially reduce the efficiency of phosphodiester 

hydrolysis.3b In preliminary experiments, we had demonstrated that ZrIV could hydrolyze the 

acetylated dipeptide AcGly-Gly between pH 4.4-4.7 (60 °C, 1 mM AcGly-Gly, 5 mM ZrCl4; 

data not shown). However, as with ZrIV-assisted phosphodiester hydrolysis, we found that 

peptide hydrolysis yields were significantly diminished at pH values approaching 7.0. To 

circumvent this difficulty, we employed 4,13-diaza-18-crown-6 (1) and are now pleased to report 
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this reagent dramatically accelerates ZrIV-assisted peptide hydrolysis at pH 7.0 - 7.3 (37 - 60 °C). 

To the best of our knowledge, we are the first research group to present evidence of efficient ZrIV 

hydrolysis of unactivated peptide amide bonds. 

O
N
H

O

OO
H
N

NH2

OH
OHOH

1 2  

Results and Discussion 

 A series of 16 dipeptides was studied first (Table 3.1, entries 1-16). In a total volume of 

400 µl, 2 mM of each dipeptide was reacted in either 10 mM ZrCl4, 19 – 22 mM 4,13-diaza-18-

crown-6 or 10 mM ZrCl4 in 19 – 22 mM 4,13-diaza-18-crown-6. The pH was adjusted at 25 °C 

to 7.0 – 7.3 by direct addition of the crown ether,9 whereas in the absence of the ether, pH was 

adjusted to 6.9 – 7.4 with NaOH. (Because the pKa1 of 4,13-diaza-18-crown-6 is 7.94 at 25 oC,10 

we utilized the azacrown ether to buffer the reaction pH. An expected, pre- and postreaction 

measurements revealed minimal pH drift; Table 3.1.) After 20 h at 60 °C, each reaction was 

equilibrated with 1/5 volume of 0.5 M EDTA pH 8 (1 h, at 25 °C). Amino acids released upon 

peptide amide bond hydrolysis were then derivatized with dimethylaminoazobenzenesulfonyl 

chloride (dabsyl chloride) and identified and quantitated by reversed-phase HPLC analysis 

(Supporting Information).  
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Table 3.1. Extent of ZrCl4–Assisted Peptide Hydrolysis in the Absence and Presence of 4,13-Diaza-18-crown-6 (t = 
20 h, 60 °C)a 

  ZrIV  azacrown ether  ZrIV +azacrown ether 
 peptide pH yield (%) pH yield (%) pH yield (%)  increase (%) 
1 KG 7.4 12 7.2 0 7.1 17 42 
2 GK 7.1 16 7.0 0 7.1 17 6 
3 GL 7.0 5 7.2 0 7.2 35 600 
4 LG 7.0 3 7.2 1 7.2 54 1700 
5 GH 7.3 15 7.2 0 7.1 56 273 
6 PG 7.2 7 7.2 1 7.1 63 800 
7 HG 7.0 10 7.2 0 7.0 66 560 
8 GQ 7.2 6 7.2 0 7.2 68 1033 
9 GM 7.2 4 7.3 0 7.3 75 1775 
10 MG 7.2 5 7.3 0 7.3 77 1440 
11 DG 6.9 19 7.1 0 7.1 85 347 
12 GD 7.2 30 7.1 0 7.1 87 190 
13 GS 7.2 28 7.2 0 7.0 88 214 
14 GG 7.1 26 7.2 1 7.0 90 246 
15 SG 7.1 7 7.3 0 7.1 91 1200 
16 GE 6.9 10 7.2 0 7.2 97 870 
17 GGb 7.1 26 6.9 0 7.0 22 -15 
18 GG 4.2 42 4.8 0 4.2 65 55 
19 AcGGOMec 7.2 1 7.1 0 7.0 26 2500 
20 GEd 6.7 6 nd nd 7.3 39 550 
21 GEe 7.0 16 7.0 0 7.2 77 381 
a[peptide]0 = 2 mM, [ZrCl4]0 = 10 mM, [4,13-diaza-18-crown-6]0 = 19 - 22 mM. Yield (%) = percent of Gly 
released. Ether increase (%) = [(yield of ZrIV with 4,13-diaza-18-crown-6 – yield of ZrIV)/ yield of ZrIV] x 100. 
Reported pH values are an average of pre- and postreaction measurements. Average pH drifts were 1.3 + 0.4, 0.1 + 
0.1, and 0.1 + 0.2 for the reactions conducted in the presence of ZrCl4, 4,13-diaza-18-crown-6, and ZrCl4 with 4,13-
diaza-18-crown-6, respectively (n = 17, pH 6.9 - 7.4, 60 °C). Not determined = nd. b40 mM 
tris(hydroxymethyl)aminomethane used to substitute for the ether. cYield (%) = percent of Gly + Gly-OMe released. 
dReactions are at 37 °C. e10 mM ZrOCl2·8H2O in 7 mM 4,13-diaza-18-crown-6 used to substitute for 10 mM ZrCl4 
in 19 - 22 mM 4,13-diaza-18-crown-6. 

 Wheareas zirconium(IV)-assisted peptide cleavage of the 16 dipeptides was minimal in 

the absence of 4,13-diaza-18-crown-6, zirconium hydrolysis of all neutral and negatively 

charged dipeptides was increased by 190 - 17775% upon addition of the azacrown ether (Table 

3.1, entries 1 - 16). Amounts of glycine released ranged from 35% for Gly-Leu to 97% for Gly-

Glu (entries 3 – 16). Interestingly, both positively charged dipeptides displayed low levels of 

hydrolysis in the absence and presence of the azacrown ether, perhaps due to unfavorable 

electrostatic interactions with positively charged ZrIV and/or ZrIV/azacrown ether complex 

(entries 1 and 2). Overall, the data in Table 3.1 show that ZrIV/4,13-diaza-18-crown-6 shows a 
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marked preference for efficient hydrolysis of neutral and negatively charged peptides containing 

glycine and amino acids with oxygen-rich side chains. Essentially no hydrolysis was observed 

for azacrown ether controls in which ZrCl4 was substituted by equivalent volumes of water 

(Table 3.1). It is also important to note that insoluble ZrIV precipitates were formed in all ZrCl4 

reactions. To our surprise, 4,13-diaza-18-crown-6 did not appear to influence the extent of ZrIV 

precipitation. 

 Tris(hydroxymethyl)aminomethane (2) reduces the formation of zirconium precipitates at 

pH > 5 and has been shown to significantly increase ZrCl4 phosphodiester hydrolysis in acidic 

and neutral solutions3b,c. In an attempt to further enhance peptide cleavage yields and decrease 

precipitation, a reaction was conducted in which 40 mM 2 was used to substitute for the crown 

ether (60 °C, 2mM Gly-Gly, 10 mM ZrCl4, 20 h). Because the pKa of Tris ligand is 8.1 at 25 oC, 

the reaction pH was adjusted to 7.0 by direct addition of 2.9 Interestingly, 2 helped to reduce ZrIV 

precipitation, peptide hydrolysis was slightly decreased under the experimental conditions we 

employed (Table 3.1, entry 17). This observation led us to speculate that hydrolysis of peptides 

by ZrIV/4,13-diaza-18crown-6 might have a heterogeneous component similar to peptide 

hydrolysis by lanthanide hydroxide gels.1e (Upon addition of 40 mM EDTA to a typical 

ZrIV/4,13-diaza-18-crown-6 reaction, we found that ZrIV precipitation was almost completely 

cleared while hydrolysis was reduced 94%.) 

 The dipeptide Gly-Gly was then treated with ZrIV at pH 4.2 (60 °C, 2 mM peptide, 10 

mM ZrCl4, 20 h). As expected, hydrolysis by ZrIV alone was more efficient at pH 4.2 than pH 7.1 

(Table 3.1, entries 14 and 18). However, in the presence of 10 mM ZrIV and 20 mM 4,13-diaza-

18-crown-6, hydrolysis was higher at pH 7.1, indicating that the azacrown ether is more effective 

at near-neutral pH. 
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 Hydrolysis of the blocked peptide analogue AcGly-GlyOMe11 was studied next (pH 7.0 - 

7.2, 60 °C, 2 mM peptide, 10 mM ZrCl4, 20 h). Although levels of cleavage were reduced in 

comparison to unblocked Gly-Gly, ZrIV-hydrolysis of AcGly-GlyOMe was increased by 2500% 

in the presence of 19 mM azacrown ether (Table 3.1, entries 14 and 19). The ability of ZrIV/4,13-

diaza-18-crown-6 to hydrolyze Gly-Gly irrespective of the presence of free and/or blocked N- 

and C-terminal peptide groups is significant in light of the fact that many applications in 

biochemistry require internal cleavage of peptide amide bonds. In a reaction containing 4mM of 

the tetrapeptide Ala-Gly-Asp-Val, 20 mM ZrCl4, and 40 mM 4,13-diaza-18-crown-6, 70% free 

Ala, 71% free Gly, 7% free Asp, and 41% free Val were released, reflecting preferential 

hydrolysis of both the Ala-Gly and Gly-Asp peptide amide bonds (pH 7.2, 60 °C, 20 h). 

 To evaluate ZrIV activity under physiologically relevant conditions, the dipeptide Gly-Glu 

was reacted at pH 7.3, 37 °C (2 mM peptide, 10 mM ZrCl4, 20 mM 4,13-diaza-18-crown-6, 20 h). 

We are pleased to report that 39% of the dipeptide was hydrolyzed and that the azacrown ether 

increased levels of ZrIV hydrolysis by 550% (Table 3.1, entry 20). Time course experiments were 

then conducted at 37 and 60 oC to monitor reaction kinetics. Products obtained at individual time 

points were derivatized with dabsyl chloride, hydrolysis yields were determined by subsequent 

reverse-phase HPLC analysis (Figure 3.1 and Supporting Information). At 37 °C and pH 7.3, the 

half-life (t1/2) for ZrIV/4,13-diaza-18-crown-6 hydrolysis of Gly-Glu was estimated 36.6+2.7 h. 

This represents a significant rate enhancement in comparison to the average half-life of ~200 

years estimated for spontaneous hydrolysis of unactivated peptide amide bonds under nearly 

identical conditions (pH 6.8 – 7.0, 37 oC).12 At pH 7.1 and 60 oC, t1/2 was 69.3+5.5 h and 5.3+0.1 

h for ZrIV hydrolysis of Gly-Glu without and with 4,13-diaza-18-crown-6, respectively. (As 

shown in Figure 3.1, levels of background hydrolysis produced in the absence of ZrCl4 were very 
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low at both temperatures). To test for catalytic turnover, 10 mM Gly-Glu, 5 mM ZrCl4, and 15 

mM of 4,13-diaza-18-crown-6, were reacted at 60 °C, pH 7. Yields of free glycine were 56%, 

75%, and 83% after 45 h, 94 h, and 138 h respectively. Because there was 0% glycine at 138 h 

when ZrIV was omitted, the greater than stoichiometric levels of hydrolysis indicate modest 

levels of catalytic activity. 

 
Figure 3.1. Time course plots for hydrolysis of 2 mM Gly-Glu. Percent yield = (mM free Gly released/2 mM) x 100. 
a) 60 °C: ( ) 10 mM ZrCl4, 20 mM 4,13-diaza-18-crown-6, pH 7.1; ( ) 10 mM ZrCl4, pH 7.1; (▲) 20 mM 4,13-
diaza-18-crown-6, pH 7.0. b) 37 °C: ( ) 10 mM ZrCl4, 20 mM 4,13-diaza-18-crown-6, pH 7.3; ( ) 10 mM ZrCl4, 
pH 7.0; (▲) 20 mM 4,13-diaza-18-crown-6, pH 7.0. 
 

 Although 4,13-diaza-18-crown-6 forms stable zirconium(IV) complexes in organic 

solvents,13 interactions between ZrIV and the azacrown ether are likely to be exceedingly 

complicated in aqueous solutions. This is due to the strong propensity of ZrIV to form 

polynuclear polyhydroxo species, insoluble gels, and precipitates.6,8 Nevertheless, we employed 

1H NMR spectroscopy to obtain preliminary evidence of ZrIV/4,13-diaza-18-crown-6 complex 

formation in D2O. Spectra of the azacrown ether were recorded without and with 1 equiv of the 

ZrCl4 (pH 7, 23.5 oC). In the presence of ZrIV, all of the 1H NMR azacrown ether resonances 

were shifted with respect to those of the free ligand, a feature that can be indicative of metal 

binding (Supporting Information). 
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 The formation of polynuclear polyhydroxo species by ZrCl4 involves the production of 

excess HCl.14 To circumvent this complication, we used 10 mM ZrCl2•H2O to substitute for 10 

mM ZrCl4 and reacted the oxide chloride with 2 mMGly-Glu in the absence and presence of 

4,13-diaza-18-crown-6 (pH 7.0 – 7.2, 60 oC, 20 h). Hydrolysis yields were 16% and 77%, 

respectively (Table 3.1, entry 21). In addition, only 7mM 4,13-diaza-18-crown-6 was required to 

achieve a final pH of 7.2, indicating that ZrCl2•H2O likely avoids excess HCl production.  

 In summary, 4,13-diaza-18-crown-6 dramatically enhances the rate of zirconium-assisted 

peptide hydrolysis in neutral solutions (pH 7.0 - 7.3; 37 - 60 °C). We found that ZrIV/4,13-diaza-

18-crown-6 displays a preference for cleavage of neutral and negatively charged peptides 

containing glycine and amino acids with oxygen-rich side chains. The reaction is catalytic and 

does not require the presence of free and/or blocked N- and C-terminal groups. To our 

knowledge, we are the first research group to present evidence of efficient ZrIV hydrolysis of 

unactivated peptide amide bonds. Our future work will focus on additional mechanistic studies 

and on the design of crown ether derivatives that will impart additional Lewis acidity to the ZrIV 

metal center. We envisage that ZrIV complexes might one day represent promising reagents for 

use in a variety of biochemical applications.  
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Supporting Information 

Identification and quantitation of peptide hydrolysis products: 

Upon the addition of EDTA to peptide reactions, ZrIV was chelated and the hydrolysis 

products free arginine, aspartate, glutamine, glutamate, glycine, histidine, leucine, lysine, proline, 

methionine, and serine could then be derivatized with a chromophore suitable for HPLC analysis. 

In a typical experiment, a total of 45 µL of each peptide hydrolysis reaction in 15 µL of 1 M 
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sodium bicarbonate buffer pH 9.9 was reacted with 60 µL of 24 mM dabsyl chloride in acetone 

(70 °C for 15 min).1 The solution was cooled on ice, after which 120 µL of ethanol were added. 

Twenty µL of the sample were then analyzed on a Beckman System Gold HPLC system 

equipped with a Varian MICROSORB-MV™ C18 5 µm, 100 Å, 4.6 x 250 mm reversed-phase 

column using the gradient elution scheme shown in Table 3S1. Dabsylated amino acid hydrolysis 

products were then detected by UV absorption at 466 nm (Figure 3.S1). In each case, the 

reversed phase HPLC retention times of the derivatized hydrolysis products were in exact 

agreement with corresponding dabsyl derivatized amino acid standards. In addition, the 

dabsylated standards were added to the ZrIV reaction mixtures and were shown to enhance HPLC 

peaks corresponding to the free amino acids and peptides (Figure 3.S1). Hydrolysis yields were 

then estimated based on the percent of free glycine released in each reaction. (The free glycine 

was quantitated by comparing the HPLC peak height of the dabsylated glycine hydrolysis 

product to a titration curve of a dabsylated glycine standard.) 

Table 3.S1. Reversed-phase HPLC gradient elution scheme.a 
Time    (min) Mobile Phase A (%) Mobile Phase B (%)
0 80 20 
25 55 45 
35 20 80 
40 80 20 

aSeparations were conducted at 50 °C with a flow rate of 
1 mL/min of Mobile Phase A (2% DMF in 20 mM sodium 
phosphate buffer pH 6.5), and Mobile Phase B (6% DMF in 
CH3CN). 
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Figure 3.S1. Representative HPLC chromatograms of a peptide hydrolysis reaction (pH 7.3, 60 °C, 2 mM Gly-Gly, 
10 mM ZrCl4, 20 mM 4,13-diaza-18-crown-6) dabsylated at various time points: A) t = 0 h, B) t = 20 h, C) t = 40 h. 
The peaks corresponding to dabsylated hydrolysis product Gly and dabsylated starting material Gly-Gly are 
identified: D) aliquot at t = 40 h is spiked with a dabsylated Gly standard, E) aliquot at t = 40 h is spiked with a 
dabsylated Gly-Gly standard. 
 

HPLC analysis of reaction kinetics:2 

In a total volume of 1200 µL, 2 mM of the dipeptide Gly-Glu was reacted with 10 mM 

ZrCl4 in the presence and absence of 20 mM 4,13-diaza-18-crown-6 at 37 °C and/or at 60 ° C. 

An Eppendorf Thermomixer R was used to control temperature to + 0.1 °C. Seventy µL reaction 

aliquots were removed at suitable time points, quenched with 14 µL of 0.5 M EDTA pH 8 (1 h, at 

25 °C), and stored at -20 °C. At the conclusion of the time course experiment, the aliquots were 

derivatized with dabsyl chloride and the release of free glycine (Pt) was monitored on a 

Beckman System Gold HPLC system as described above. Values of P∞ were estimated from 

HPLC chromatograms of dabsylating standard solutions of 2 mM glycine in the presence of 20 

mM 4,13-diaza-18-crown-6 and/or 10 mM ZrCl4. For each set of reaction conditions, half-lives 

were estimated from duplicate time course experiments in which plots of ln(P∞ - Pt) as a 

a)     t = 0 b)     t = 20 c)     t = 40 d)     t = 40

         + Gly

e)     t = 40

         + Gly-Gly

Gly

Gly
Gly

Gly-Gly

Gly-Gly Gly-Gly Gly-Gly

Gly

Gly-Gly
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function of time were linear with R > 0.996 (t1/2 = 0.693/k, k = -slope; Figure 3.S2).  

 

Figure 3.S2. Representative kinetic plots derived from release of free glycine by ZrIV-hydrolysis of the dipeptide 
Gly-Glu. Ln(P∞ - Pt) is plotted as a function of time for: A) 2 mM Gly-Glu, 10 mM ZrCl4, 20 mM 4,13-diaza-18-
crown-6, 60 °C, pH 7.1; B) 2 mM Gly-Glu, 10 mM ZrCl4, 60 °C, pH 7.1; and C) 2 mM Gly-Glu, 10 mM ZrCl4,  20 
mM 4,13-diaza-18-crown-6 , 37 °C, pH 7.3. 
 

NMR spectrometry: 

 In order to obtain evidence of complex formation, 1H NMR spectra of 10 mM 4,13-diaza-

18-crown-6 and 10 mM ZrCl4 at L:M ratios of 1:0 and 1:1 were recorded in D2O using a 300 

MHz Varian Unity+ Spectrometer at 23.5 °C. Solutions were adjusted to a pH of 7.0 with 0.1 M 

CF3COOH in D2O and 0.1 M NaOH in D2O. In the presence of ZrIV, small downfield shifts were 

observed for all 1H NMR azacrown ether resonances with respect to free ligand (Table 3.S2, 

Figures 3.S3A and B). These changes are similar in magnitude to those produced by potassium(I) 

in the 1H NMR spectrum of a potassium 4,13-diaza-18-crown-6 complex3 and could be therefore 

be indicative of zirconium(IV) complex formation. Nevertheless, because ZrIV is relatively acidic, 

the downfield shifts we observed might also have resulted from an increase in ligand pKa due to 

the change in ionic strength arising from the addition of 10 mM ZrCl4 to 10 mM 4,13-diaza-18-

crown-6. To test these two alternative hypotheses, we utilized the metal chelating agent EDTA, 

Reaction Time / min

y  = 1.759 - 0.002155x  R = 0.9980 y  = 2.210 - 0.000177x  R = 0.9977 y  = 2.046 - 0.000300x  R = 0.9967

a)   ZrCl4 + 4,13-diaza-18-crown-6,

       60 °C, pH 7.1

b)   ZrCl4, 60 °C, pH 7.1 c)   ZrCl4 + 4,13-diaza-18-crown-6,

       37 °C, pH 7.3

t 1/2 = 5.3 + 0.1 h t 1/2 = 69.3 + 5.5 h t 1/2  = 36.6 + 2.7 h

Ln
 (P

   
- P

t )
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which forms a stable 1:1 complex with zirconium(IV) at pH 7.0. In the presence of 20 mM 

EDTA, downfield shifts created by the addition of 10 mM ZrCl4 to 10 mM 4,13-diaza-18-crown-

6 were significantly smaller in magnitude. This was the case for two out of three 1H NMR 

azacrown ether resonances (Table 3.S3, Figures 3.S4A and B). Most notably, the 0.023 ppm shift 

associated with 4,13-diaza-18-crown-6 NHCH2 protons was reduced to 0.0002 ppm. This result 

can be considered to be indicative of ZrIV/4,13-diaza-18-crown-6 complex formation in the 

absence of EDTA. 

 
Table 3.S2. 1H NMR chemical shift data for 4,13-diaza-18-crown-6. 
Spectra were recorded in the absence and presence of ZrCl4 (300 MHz 
Varian Unity+ Spectrometer, D2O, pH 7, 23.5 °C). a 

 4,13-diaza-18-crown-6  ZrCl4 + 4,13-diaza-18-crown-6 
 δ 

(ppm) 
 3J  H-H 

(Hz) 
δ 
(ppm)

 3J  H-H 
(Hz) 

OCH2 3.650: t, 8 H 4.80 3.658 (0.008): t, 8 H 4.95 
OCH2CH2O 3.583: s, 8 H - 3.585 (0.002): s, 8 H - 
NHCH2 3.148: t, 8 H 4.80 3.171 (0.023): t, 8 H 4.80 

a[ZrCl4] = 10 mM, [4,13-diaza-18-crown-6] = 10 mM. Numeric values in 
parenthesis indicate downfield shifts relative to free ligand. Solutions were 
adjusted to pH 7 with 0.1 M CF3COOH in D2O and 0.1 M NaOH in D2O. 

 

Table 3.S3. 1H NMR chemical shift data for 4,13-diaza-18-crown-6. 
Spectra were recorded with EDTA, in the absence and presence of ZrCl4 
(300 MHz Varian Unity+ Spectrometer, D2O, pH 7, 23.5 °C). a 

 4,13-diaza-18-crown-6 
+ EDTA  

ZrCl4 + 4,13-diaza-18-crown-6  
 + EDTA 

 δ 
(ppm) 

 3J  H-H 
(Hz) 

δ 
(ppm)

 3J  H-H 
(Hz) 

OCH2 3.660: t, 8 H 4.95 3.663 (0.003): t, 8 H 4.80 
OCH2CH2O 3.586: s, 8 H - 3.589 (0.003): s, 8 H - 
NHCH2 3.175: t, 8 H 4.95 3.177 (0.002): t, 8 H 4.80 

a[ZrCl4] = 10 mM, [4,13-diaza-18-crown-6] = 10 mM, [EDTA] = 20 mM. 
Numeric values in parenthesis indicate downfield shifts relative to free 
ligand. Solutions were adjusted to pH 7 with 0.1 M CF3COOH in D2O and 
0.1 M NaOH in D2O. 
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Figure 3.S3. A) L:M 1:0. 1H NMR spectrum of 10 mM 4,13-diaza-18-crown-6 in D2O at pH 7, 23.5 °C. 
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Figure 3.S3. B) L:M 1:1. 1H NMR spectrum of 10 mM ZrCl4 and 10 mM 4,13-diaza-18-crown-6 in D2O at pH 7, 
23.5 °C.  
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Figure 3.S4. A) 1H NMR spectrum of 10 mM 4,13-diaza-18-crown-6 and 20 mM EDTA in D2O at pH 7, 23.5 °C. 
(EDTA resonances were identified by comparison to an NMR spectrum of 20 mM EDTA in D2O, pH 7.) 
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Figure 3.S4. B) 1H NMR spectrum of 10 mM ZrCl4, 10 mM 4,13-diaza-18-crown-6, and 20 mM EDTA in D2O at 
pH 7, 23.5 °C. (EDTA resonances were identified by comparison to an NMR spectrum of 10 mM ZrCl4, 20 mM 
EDTA in D2O, pH 7.) 
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CHAPTER IV 

Tuning Zr(IV)-Assisted Peptide Hydrolysis at Neutral pH 

(This chapter was written by Miki Kassai with assistance from Prof. Kathryn B. Grant. All 
experiments were performed by Miki Kassai. The chapter will be submitted to Inorganic 
Chemistry Communications and as been written in the format of this journal.) 
 

Abstract 

The present study has compared a total of 17 ligands to observe their relative effects on 

Zr(IV)-assisted hydrolysis of the dipeptide Gly-Gly (60 °C, pH 6.8 - 7.4, t = 4 h and t = 10 h). 

While it was not necessary to have a ring structure to enhance Zr(IV) reactivity, the macrocyclic 

azacrown ether ligands 4,13-diaza-18-crown-6 and 4,10-trioxa-7,13-diazacyclopentadecane 

produced the overall highest hydrolysis yields. The potential ability of open-chain ligands to 

form multiple chelate rings appeared to coincide with substantially reduced levels of peptide 

hydrolysis and Zr(IV) precipitation. 

Introduction 

Metal complexes of Ce(IV), Co(II), Co(III), Cu(II), Fe(III), Mo(IV), Ni(II), Pd(II), Pt(II), 

Zn(II), and Zr(IV) can be used as non-enzymatic reagents to efficiently hydrolyze peptides 

and/or proteins [1]. The design and synthesis of these artificial metallopeptidases has been 

focused on effective cleavage of unactivated peptide amide bonds. A number of metal-based 

model systems that incorporate bidentate, tridentate, multidentate and/or macrocyclic ligands 

have been reported [1b-e, k,l,n,o,q-u]. For example, the Kostić group has shown that cis-
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[Pd(en)(H2O)2]2+ and other Pd(II) complexes cleave the X-Y bond in the sequences X-Y-Met-Z 

and X-Y-His-Z, in which X, Y, and Z can be any amino acid in a weakly acidic solution [1k]. A 

new bidentatethioether complex of Pd(II), cis-[Pd(CH3SCH2CH2CH2SCH3)(H2O)2]2+, displays 

the same selectivity as [Pd(en)(H2O)2]2+. However, the complex reacts more slowly due to the 

steric bulk of the thioether ligand [1q]. Djuran et al. reported that the Pd(II) complex cis-

[Pd(dpa)(H2O)2]2+ is able to hydrolyze the N-acetylated dipeptide AcMet-Gly under acidic 

condition [1t]. It was found that 25% of the dipeptide was cleaved at 60 oC after 2 h and that a 

90% cleavage yield was obtained after 72 h. However, AcHis-Gly showed no hydrolysis because 

of steric hindrance arising from interactions between the two bulky dpa pyridine rings and the 

imidazole ring in the side chain of histidine. Thus, the reactivity of a metal complex towards 

specific peptide sequences can vary greatly. When designing an artificial metallopeptidase, it is 

therefore important to evaluate and compare the effects of a variety of different metal chelating 

ligands.  

We have found that the metal ion zirconium(IV) efficiently hydrolyzes amide bonds in 

peptides at neutral pH [1o,r,s]. Other groups have shown that Zr(IV) hydrolyzes phosphodiester 

bonds in p-nitrophenol activated phosphodiesters, in nucleic acids, and in nucleotides [2]. Our 

research has focused on Zr(IV) for a number of major reasons. Because Zr(IV) is oxophilic and 

forms complexes with high coordination numbers [3], it should be able to interact with peptide 

amide carbonyl oxygens (activating the carbonyl carbon towards nucleophilic attack), while 

delivering a hydroxide nucleophile to the scissile amide bond. (The pKa values of Zr(IV) bound 

water molecules are lowered from ≈ 15.7 to  < 0.6 [4].) In addition, Zr(IV) possesses low cellular 

toxicity [5], enhanced Lewis acid strength, and rapid-ligand exchange kinetics [6], a requirement 

for efficient catalytic turnover. 
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Results and Discussion 

We have shown that the macrocyclic ligand 4,10,13-tetraoxa-7,16-diazacyclooctadecane 

(4,13-diaza-18-crown-6) markedly enhances the reactivity of Zr(IV): t1/2 values at 60 °C and pH 

7.1 are 5.3 + 0.1 h and 69.3 ± 5.5 h for Zr(IV)-assisted hydrolysis of the dipeptide Gly-Glu in the 

presence and absence of 4,13-diaza-18-crown-6, respectively [1o]. We then compared the 

relative effects of 4,13-diaza-18-crown-6 to N-(2-hydroxyethyl)piperazine-N’-2-ethanesulfonic 

acid (HEPES) and tris(hydroxymethyl)aminomethane (Tris) [1s]. When 78 mM of HEPES was 

added to a typical hydrolysis reaction (60 oC and pH 6.6 – 7.1, 2 mM Gly-Glu, 10 mM ZrCl4, 20 

h), Gly-Glu was hydrolyzed in high yield (80%), similar to the cleavage produced using 20 mM 

of 4,13-diaza-18-crown-6 (90%). However, in the presence of 40 mM of Tris, hydrolysis was 

only 22% complete, similar to Zr(IV)-assisted hydrolysis of Gly-Glu when 4,13-diaza-18-crown-

6, HEPES, and Tris were omitted (26%). Thus, 4,13-diaza-18-crown-6 and HEPES were show to 

facilitate Zr(IV)-assisted peptide hydrolysis [1o,s], while Tris produced an inhibitory effect [1o]. 

Peptide cleavage was not observed in negative controls in which Zr(IV) was replaced by an 

equivalent volume of water. 

With the goal of developing synthetic Zr(IV)-based metallopeptidases with superior 

reactivities at neutral pH, the present study has systematically compared a total of 17 ligands 

(Fig. 4.1; Figs. 4.S3 and 4.S4 in Supporting Information) to observe their effects on dipeptide 

hydrolysis. We have examined 4,13-diaza-18-crown-6 and similar macrocyclic ligands as well as 

ligands that have been used to facilitate metal-assisted hydrolysis of phosphodiester bonds in 

nucleotides and/or in nucleic acids. We have also studied compounds obtained by breaking 4,13-

diaza-18-crown-6, HEPES, and Tris down into their component parts. This was done to identify 
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key structural features that might be responsible for either promoting or inhibiting peptide 

hydrolysis.  

Individual hydrolysis solutions contained 2 mM of the dipeptide Gly-Gly, 10 mM of 

ZrCl4, and 20 mM of ligand (Supporting Information). Prior to each reaction, pH was adjusted at 

25 °C to ~ 7.0 by direct addition of NaOH and/or HCl. The solutions were treated at 60 °C, after 

which aliquots were removed at 0 h, 4 h, and 10 h time points. Amino acids released upon 

peptide amide bond hydrolysis where then derivatized with dimethylaminoazobenzenesulfonyl 

chloride (dabsyl chloride) and identified by reversed-phase HPLC (Supporting Information). 

Relative product yields were estimated by calculating the ratio of the HPLC peak heights of the 

hydrolysis product glycine to the peak heights of unreacted Gly-Gly. Peptide cleavage was 

minimal at all t = 0 h time points. 

In our first experiment, we compared Tris (1) to its component parts 2-amino-1,3-

propanediol (1a) and ethanolamine (1b) (Fig. 4.1a, Fig. 4.S3a). Ligand 1 substantially reduced 

the formation of zirconium precipitates. However, it produced the lowest levels of hydrolysis at t 

= 4 h and t = 10 h. (This is in contrast to Zr(IV)-assisted phosphodiester hydrolysis where ligand 

1 has been shown to significantly increase hydrolysis yields in acidic and neutral solutions [2b].) 

At pH values above 5.0-5.2, Zr(IV)  forms insoluble gels and precipitates [7]. While these 

precipitates are thought to substantially reduce the efficiency of phosphodiester hydrolysis 

[2b,c], they appear to coincide with enhanced peptide hydrolysis in our Zr(IV) experiments. 

Ligand 1a produced intermediate levels of hydrolysis and precipitation, followed by 1b, which 

produced the most precipitation and the highest peptide hydrolysis yields. Ligands 1, 1a, and 1b 

form complexes with a wide variety of metals including Eu(III) (1), Cu(II) (1a), and Zr(IV) (1b) 

[8]. (In the case of 1b, Zr(IV) forms a bis complex in which each ethanolamine ligand is 
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bidentate and coordinates through its N and O donor atoms.) When comparing the three ligands, 

it is apparent that levels of Zr(IV) precipitation and levels of peptide hydrolysis are reduced 

according to the potential ability of each ligand to form multidentate chelate rings (1 > 1a > 1b). 

HEPES (2) and component parts 2-amino-ethanesulfonic acid (2b), 1-piperazineethanol 

(2c) and derivative 1,4-piperazinediethanol (2a) were studied next (Fig. 4.1b, Fig. 4.S3b). It has 

long been assumed that the biological buffer HEPES does not possess binding affinity for metal 

ions. However, there is now evidence that HEPES interacts weakly with Cu(II) and other metals 

[9]. Furthermore, HEPES analog 2a undergoes weak complexation with Mg(II), Ca(II), Sr(II), 

Ba(II), Pr(III), Ni(II), Cu(II), and Zn(II) [10]. While ligand 2d has not been studied, 2c forms a 

ternary complex with [Cu(II)(Gly-Gly)] in which 2c acts as a monodenate N donor ligand [11]. 

In the presence of Zr(IV), HEPES and its analogs hydrolyzed Gly-Gly in the following order: 2 > 

2a ≥ 2b ~ 2c. At t = 10 h, it is apparent that any change made to the HEPES framework reduces 

the effectiveness of this ligand. Significant Zr(IV) precipitation was observed in all of the above 

hydrolysis reactions. 

We then made a comparison of macrocyclic azacrown ether 4,13-diaza-18-crown-6 (3) to 

its open-chain component parts 2-(2-aminoethoxy)-ethanol (3a) and 2,2'-iminobis-ethanol (3b) 

and to derivative 2,2',2''-nitrilotris-ethanol (3c) (Fig. 4.1c, Fig. 4.S3c). In a previous paper, we 

employed 1H NMR to obtain preliminary evidence of weak complex formation between Zr(IV) 

and azacrown ether 3 [1o]. With respect to 3b [8a], Zr(IV) forms a mono complex in which the 

ligand produces a single, eight membered chelate ring by coordinating through its two oxygen 

donor atoms. Interestingly, composite formation constants show that the complex formed 

between vanadium(V) and multidentate ligand 3c is 4-fold more stable than the complex formed 

between V(V) and 3b [12]. In the presence of Zr(IV), ligands 3 and 3a produced approximately 
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the same levels of peptide hydrolysis within experimental error at the t = 4 h time point, but at t = 

10 h, 3 produced significantly more cleavage than 3a. Ligand 3b showed much lower amounts of 

hydrolysis at 4 h and 10 h. Taken together, the above data suggest that the structural feature 

“ROCH2CH2OCH2CH2NR” may contribute to the efficiency of Zr(IV)-assisted peptide 

hydrolysis. It is also important to note that the multidentate, chelating ligand 3c dramatically 

reduced Zr(IV) precipitation and peptide cleavage  yields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.1. The ratio of the peak height of the hydrolysis product glycine to the peak height of unreacted Gly-Gly 
plotted as a function of time for hydrolysis reactions containing 2 mM of Gly-Gly, 10 mM of ZrCl4, and 20 of ligand 
(60 °C and pH 6.8-7.4). The letter n indicates the number of trials. Error bars indicate standard deviation. 
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Our next comparison was of four macrocyclic 18-menbered and 15-menbered crown 

ether ring systems containing the hard donor atoms N and/or O: 4,13-diaza-18-crown-6 (3), 4,10-

trioxa-7,13-diazacyclopentadecane (4a), 1,4,7,10-tetraoxa-13-azacyclopentadecane (4b), and 18-

crown-6 (4c) (Fig. 4.1d, Fig. 4.S3d). These macrocycles coordinate with a wide variety of 

transition metal ions, including La(II), Eu(III) and other lathanides [13]. (As mentioned above, 

we previously obtained 1H NMR evidence of weak complex formation between Zr(IV) and 

azacrown ether 3 [1o]). Our current data has revealed that relative Zr(IV)-assisted peptide 

hydrolysis yields decrease in the following order: 3 ~ 4a > 4b ≥ 4c . Ligands 3 and 4a possess 

two nitrogen donor ligands, while 4b and 4c have 1 and 0, respectively. Thus, the presence of 

nitrogen atoms appears to have had a positive impact on Zr(IV)-assisted peptide hydrolysis 

yields. Significant Zr(IV) precipitation was observed in all reactions. 

We ranked the above 14 ligands at 4 h and 10 h time points in order of decreasing 

hydrolysis yields (Figs. 4.S5 and 4.S6). The macrocyclic ligands 3 and 4a produced the most 

hydrolysis, followed by open-chain compounds 3a and then 2 (3 ~ 4a ≥ 3a ≥ 2).  The lowest 

levels of cleavage were produced by open-chain, multidentate ligands 1 and 3c (1 ~ 3c).  

In our final experiment, we investigated three open-chain ligands which facilitate either 

Ce(IV)- or Zr(IV)-assisted phosphodiester bond hydrolysis [2b,c; 14]: D-glucamine (5), 2,6-

pyridinedimethanol (6), and N,N'-[(2-hydroxy-1,3-phenylene)bis(methylene)]bis[N-

(carboxymethyl)-glycine] (7) (Fig. 4.S4). Similar to Zr(IV), Ce(IV) has a strong tendency to 

form catalytically active metal hydroxide gels and precipitates. To address this problem, 

Komiyama and coworkers utilized glucamine (5). They showed that this ligand could be used to 

reduce Ce(IV) precipitation and increase  levels of Ce(IV)-assisted DNA hydrolysis 109-fold 

over background [14]. Moreover, Jagoda and Krämer employed the multidentate, chelating 
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ligands 6 and 7 to respectively reduce Zr(IV) precipitation at neutral pH and increase the rate of 

Zr(IV)–assisted ATP hydrolysis ~ two and three times more than Tris (1) [2c]. Therefore, we 

were interested in testing the effects of ligands 5, 6, and 7, but Zr(IV)-assisted peptide hydrolysis 

was not observed. However, as seen with the multidentate, chelating ligands Tris (1) and 2,2',2''-

nitrilotris-ethanol (3c), which produced extremely low levels of peptide hydrolysis, zirconium 

precipitation was dramatically reduced. Taken together, these data suggest that, at pH 7.0, 

Zr(IV)-assisted peptide hydrolysis might be heterogeneous in nature, similar to peptide 

hydrolysis by lanthanide hydroxide gels. It is conceivable that strong, multidentate chelating 

ligands might fully occupy all of the coordination sites on Zr(IV), hindering the interaction of 

this metal with peptide substrates, hydroxide nucleophiles, and other competing ligands.  

In conclusion, a comparison of 17 ligands in hydrolysis reactions containing 2 mM of the 

dipeptide Gly-Gly, 10 mM of ZrCl4, and 20 mM of ligand (60 °C at t = 4 h and t = 10 h, pH 6.8-

7.4) showed that the following four compounds produced the most glycine hydrolysis product at 

both of the time points: 4,13-diaza-18-crown-6 (3) ~ 4,10-trioxa-7,13-diazacyclopentadecane 

(4a) ≥ 2-(2-aminoethoxy)-ethanol (3a) ≥ HEPES (2) (Figs. S5 and S6). Our results demonstrated 

that while it was not necessary to have a ring structure to enhance Zr(IV) reactivity, the 

macrocyclic azacrown ether ligands (3) and (4a) produced the overall highest hydrolysis yields. 

The apparent, subtle advantage conferred by the macrocyclic framework of ligands 3 and 4a may 

be due to the presence of free axial coordination sites on Zr(IV) that are available to associate 

with hydroxide nucleophiles as well as with oxygen and nitrogen donor atoms in Gly-Gly. With 

respect to open-chain ligands, the potential ability to form multiple chelate rings appears to 

coincide with reduced levels of Zr(IV) precipitation as well as reduced levels of hydrolysis. Our 

future work will focus on mechanistic and structural studies aimed at testing our hypotheses. 
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Supporting Information 

Materials and Methods. 
 
Reagents: 

All reagents were of the highest available purity. Distilled, deionized water was utilized in the 

preparation of all buffers. Metal solutions were freshly prepared in all cases. Sodium bicarbonate, 

sodium phosphate monobasic and dibasic salts, dimethylformamide (DMF), glycine (Gly), 

glycylglycine (Gly-Gly), glycylglutamate (Gly-Glu), dimethylaminoazobenzenesulfonyl chloride 

(dabsyl chloride, DABS-Cl), iminodiacetic acid, and 37% formaldehyde were purchased from 

Sigma. HPLC grade acetone was from EMD Biosciences, Inc. and Optima grade acetonitrile was 

from Caledon Labs. Molecular biology grade ethylenediaminetetraacetic acid disodium salt 

(EDTA) was purchased from the Eastman Kodak Company. D-glucamine was from TGI America 

and NaOH was from J.T. Baker. Ligand 7 was prepared according to a reported procedure [1]: to 

a 100 mL aqueous solution of iminodiacetic acid (16.7 g, 0.125 mol) and 6.8 mL of p-cresol 

(6.75 g, 0.063 mol) were added 40 mL of an aqueous solution of NaOH (10.5 g, 0.25 mol) 
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cooled in an ice-water bath. Then, a total of 15 mL of 37% formaldehyde was added dropwise at 

0 oC. The solution was stirred for 30 min at room temperature, stirred for 4 h at 70 oC, and then 

concentrated to dryness. The resulting pale yellow solid was recrystallized from methanol (90% 

yield). 1H NMR (300 MHz, D2O): δ 2.21 (s, 3H), 3.20 (s, 8H), 3.76 (s, 4H), and 6.99 (s, 2H). All 

other chemicals including 4,13-diaza-18-crown-6, ZrCl4 (purity > 99.99%), and p-cresol were 

purchased from the Aldrich Chemical Company.  

 

Peptide Hydrolysis Reactions: 

A total of 16 µL of Gly-Gly (100 mM stock concentration in ddH2O) was reacted at 60 °C in the 

presence of ddH2O, 80 µL of ZrCl4 (100 mM stock concentration in ddH2O), and 80 µL of ligand 

(100 mM stock concentration in ddH2O). Prior to each reaction, the pH was adjusted at 25 °C to 

7.0 by direct addition of NaOH and/or HCl to a final volume of 800 µL. An Eppendorf 

Thermomixer R was then used to maintain temperature at 60 °C + 0.1 °C. At 0 h, 4 h, and 10 h 

time points, 140 µL aliquots were removed. Reaction pH was then determined by averaging pre 

and post reaction measurements, after which the aliquots were quenched by adding 28 µL of a 

stock solution of 0.5 M EDTA pH 8.0 (1 h, at 25 °C; 83.3 mM final EDTA concentration).  

 

HPLC Analysis of Peptide Hydrolysis Reaction Products: 

Amino acid produced in Zr(IV)-assisted peptide hydrolysis reactions were identified by 

HPLC analysis of their dabsylated derivatives (Fig. 4.S1). In a total volume of 120 µL, a 45 µL 

aliquot of each reaction was treated with 60 µL of 25 mM dabsyl chloride in acetone in the 

presence of 15 µL of 1 M sodium bicarbonate buffer pH 10 [2]. Solutions were reacted at 70 °C 

for 15 min, chilled on ice, and diluted with 120 µL of ethanol. Twenty µL of each sample were 
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then analyzed on a Beckman System Gold High Performance Liquid Chromatograph (HPLC) 

system equipped with a Varian MICROSORB-MV™ C18 5 µm, 100 Å, 4.6 x 250 mm reversed-

phase column. Using the gradient elution scheme shown in Table 4.S1, separations were 

conducted at 50 °C with a 1 mL/min flow rate of mobile phase A (2% DMF in 20 mM sodium 

phosphate buffer pH 6.5), and of mobile phase B (6% DMF in acetonitrile). Dabsylated 

hydrolysis products were detected by UV absorption at 466 nm (Fig. 4.S2) and their identities 

were confirmed by comparison of retention times to corresponding dabsylated amino acid 

standards. Appropriate dabsylated standards were then added to the reaction mixtures and were 

shown to enhance peaks corresponding to hydrolysis products. The peak heights of amino acid 

product and of dipeptide starting material were measured at each time point. Relative product 

yields were then estimated by calculating the ratio of the peak height of the amino acid to the 

peak height of the unreacted dipeptide.  
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 Figures. 
 

 
Fig. 4.S1. Dabsyl chloride reacts with the primary amino groups of two glycine residues released upon metal-
assisted hydrolysis of the peptide amide bond of Gly-Gly. Two dabsylated derivatives of glycine are produced. 

 

 
Fig. 4.S2. Representative HPLC chromatograms of a peptide hydrolysis reaction (60 °C, pH 7.1, 2 mM Gly-Gly, 10 
mM ZrCl4, 20 mM 4,13-diaza-18-crown-6) dabsylated at three time points: A) t = 0 h, B) t = 4 h, C) t = 10 h. The 
peaks corresponding to dabsylated hydrolysis product Gly and dabsylated starting material Gly-Gly are identified. 
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Fig. 4.S3. A) Tris (1) and component parts 2-amino-1,3-propanediol (1a) and ethanolamine (1b). B) HEPES (2) 
and component parts 2-amino-ethanesulfonic acid (2b), 1-piperazineethanol (2c) and derivative 1,4-
piperazinediethanol (2a). C) 4,13-diaza-18-crown-6 (3) and component parts 2-(2-aminoethoxy)-ethanol (3a) and 
2,2'-iminobis-ethanol (3b) and derivative 2,2',2''-nitrilotris-ethanol (3c). D) 4,13-diaza-18-crown-6 (3) and similar 
macrocyclic ligands: 4,10-trioxa-7,13-diazacyclopentadecane (4a), 1,4,7,10-tetraoxa-13-azacyclopentadecane (4b), 
and 18-crown-6 (4c). 
 
 
 

 
Fig. 4.S4. Ligands which facilitate Ce(IV)- or Zr(IV)-assisted phosphodiester bond hydrolysis [3]: D-glucamine (5), 
2,6-pyridinedimethanol (6), and N,N'-[(2-hydroxy-1,3-phenylene)bis(methylene)]bis[N-(carboxymethyl)-glycine] 
(7). 
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Fig. 4.S5. The ratio of the peak height of the hydrolysis product glycine to the peak height of unreacted Gly-Gly 
plotted at t = 4 h for hydrolysis reactions containing 2 mM of Gly-Gly, 10 mM of ZrCl4, and 20 of ligand at 60 °C 
and pH 6.8-7.4. The letter n indicates the number of trials. Error bars indicate standard deviation. 
 

 

 

 

 

 

 

 

 

 
Fig. 4.S6. The ratio of the peak height of the hydrolysis product glycine to the peak height of unreacted Gly-Gly 
plotted at t = 10 h for hydrolysis reactions containing 2 mM of Gly-Gly, 10 mM of ZrCl4, and 20 of ligand at 60 °C 
and pH 6.8-7.4. The letter n indicates the number of trials. Error bars indicate standard deviation. 
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Table. 
 

Table 4.S1: Reversed-phase HPLC gradient elution scheme 

 Time (min) Mobile phase A (%) Mobile phase B (%) 

 0 80 20 
 25 55 45 
 35 20 80 
 40 80 20 
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CHAPTER V 

Conclusion 

 (This chapter was written by Miki Kassai with assistance from Prof. Kathryn B. Grant.) 
 
 

We first described Zr(IV)-assisted peptide hydrolysis of the dipeptide Gly-Gly and of its 

blocked dipeptide analogs at acidic to neutral pH. The hydrolysis reactions were analyzed using a 

fluorescent microplate reader and the hydrolysis products were identified by HPLC and ESI 

mass spectrometry. In our first experiment, AcGly-Gly reacted in the presence of ZrCl4 was 

treated with the fluorophore fluorescamine. The highest fluorescence intensities were observed at 

60 oC and at pH values between 4.4 and 4.7. Thus, hydrolysis yields were the highest under these 

conditions. The fluorescence intensities (and hence hydrolysis yields) were diminished as the pH 

was increased above pH 5.0 because of the formation of insoluble Zr(IV) precipitates. (The 

hydrolysis reactions became more and more turbid as the reaction pH was raised.) We then 

conducted hydrolysis experiments in which we studied Gly-Gly and its blocked N- and C- 

terminal dipeptide analogs AcGly-Gly, AcGly-GlyOMe and Gly-Gly-OMe. Although Zr(IV) was 

capable of cleaving the N- and C- terminal blocked dipeptides, our results showed that the free 

dipeptide Gly-Gly was hydrolyzed more efficiently. According to our HPLC and ESI mass 

spectrometry data, all of the amide bonds and/or ester linkages in the dipeptide Gly-Gly, and in 

its blocked dipeptide analogs were hydrolyzed by Zr(IV).  

In order to enhance the reactivity of Zr(IV) under near physiological conditions of pH 

and temperature, we employed the macrocyclic ligand 4,13-diaza-18-crown-6. At 60 °C and near 

neutral pH, ZrCl4 in the presence of 4,13-diaza-18-crown-6 hydrolyzed Gly-Leu in 35% yield 
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and Gly-Glu in 97% yield. In a study of 16 dipeptides, we showed that Zr(IV) preferentially 

hydrolyzed dipeptides containing glycine and both neutral and negatively charged amino acids 

with side chains containing oxygen. Then we conducted time course experiments at 37 oC and 60 

oC to monitor reaction kinetics. The half-life of Zr(IV)/4,13-diaza-18-crown-6 – assisted 

hydrolysis of Gly-Glu at pH 7.3 and 37 oC was 36.6 ≤ 2.7 h, which represents a significant rate 

enhancement compared to the average half-life of ~ 200 years estimated for spontaneous 

hydrolysis of unactivated peptide amide bonds under nearly identical conditions (pH 6.8 – 7.0, 

37 oC). At pH 7.1 and 60 oC, half-lives were 69.3 ≤ 5.5 h and 5.3 ≤ 0.1 h for Zr(IV)-assisted 

hydrolysis of Gly-Glu in the absence and presence of 4,13-diaza-18-crown-6, respectively. In 1H 

NMR experiments, we observed weak interaction between Zr(IV) and 4,13-diaza-18-crown-6. 

We next compared the effects of 4,13-diaza-18-crown-6 to Tris and HEPES ligands. In the 

presence of HEPES, Zr(IV)-assisted peptide hydrolysis was almost as efficient as when the 

hydrolysis reaction was conducted in the presence of 4,13-diaza-18-crown-6. However, when 

Tris was used, hydrolysis yields were decreased from 90% to 22%. This indicated that 4,13-

diaza-18-crown-6 and HEPES could be employed to facilitate Zr(IV)-assisted peptide hydrolysis, 

while Tris would be expected to produce an inhibitory effect.   

We next reacted a total 17 compounds in the presence of Gly-Gly and ZrCl4. Our goal 

was to identify ligands capable of further enhancing the reactivity of Zr(IV) at near neutral pH. A 

second aim was to identify key structural features that might be responsible for either promoting 

or inhibiting Zr(IV)-assisted peptide hydrolysis. We examined: Tris, HEPES, and 4,13-diaza-18-

crown-6 derivatives; macrocyclic ligands similar to 4,13-diaza-18-crown-6; and ligands that 

were used by other groups to facilitate meal-assisted hydrolysis of phosphodiester bonds. Among 

the Tris derivatives, ethanolamine showed the high levels of hydrolysis followed by 2-amino-
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1,3-propanediol and then Tris. We observed that turbidity and hydrolysis levels were reduced in 

the same order, according to the potential ability each ligand to form multiple chelate rings. 

Among the HEPES series, HEPES produced the highest hydrolysis yields followed by 1,4-

piperazinediethanol, 2-amino-ethanesulfonic acid, and 1-piperazineethanol. Thus, any change 

made to the HEPES framework had a negative impact on cleavage efficiency. Among the 4,13-

diaza-18-crown-6 derivatives, 4,13-diaza-18-crown-6 showed the highest hydrolysis yields 

followed by 2-(2-aminoethoxy)-ethanol, 2,2'-iminobis-ethanol, and then the multidentate 

chelating ligand 2,2',2''-nitrilotris-ethanol. In addition to producing extremely low levels of 

peptide hydrolysis, 2,2’,2”-nitrilotris-ethanol substantially reduced Zr(IV) precipitation. Both 

4,13-diaza-18-crown-6 and 2-(2-aminoethoxy)-ethanol produced more cleavage compared to 

2,2’-iminobis-ethanol, leading us to hypothesize that the structural feature 

“ROCH2CH2OCH2CH2NR” might contribute to efficient peptide hydrolysis by Zr(IV). In our 

comparison of macrocyclic 18-menbered and 15-membered crown ether ring systems containing 

the hard donor atoms N and/or O, hydrolysis yields were reduced in the following order: 4,13-

diaza-18-crown-6 ~ 4,10-trioxa-7,13-diazacyclopentadecane > 1,4,7,10-tetraoxa-13-

azacyclopentadecane ≥ 18-crown-6. The ligands 4,13-diaza-18-crown-6 and 4,10-trioxa-7,13-

diazacyclopentadecane possess two nitrogen donor ligands, while 1,4,7,10-tetraoxa-13-

azacyclopentadecane, and 18-crown-6 have 1 and 0, respectively. We therefore concluded that 

the presence of nitrogen atoms might have had a positive impact on Zr(IV)-assisted peptide 

hydrolysis yields.  

Finally, we investigated three open-chain ligands which facilitate either Ce(IV)- or 

Zr(IV)-assisted phosphodiester bond hydrolysis: D-glucamine, 2,6-pyridinedimethanol, and 

N,N'-[(2-hydroxy-1,3-phenylene)bis(methylene)]bis[N-(carboxymethyl)-glycine]. Zirconium(IV) 
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precipitation was dramatically reduced in each case and all three ligands produced negligible 

levels of peptide hydrolysis. 

Overall, we demonstrated that Zr(IV)/4,13-diaza-18-crown-6 is capable of efficiently 

hydrolyzing peptides under near physiological conditions of temperature and pH. The kinetics of 

Zr(IV) hydrolysis in the presence of 4,13-diaza-crown-6 are much faster compared to 

spontaneous hydrolysis of the unactivated peptide amide bond. We also showed that it was not 

necessary for a ligand to have a ring structure to enhance the reactivity of Zr(IV), and that 

ligands with a macrocyclic framework appeared to be slightly more effective. Finally, we 

observed that the strong ligands capable of forming multiple chelate rings simultaneously 

reduced levels of Zr(IV) precipitation and levels of peptide hydrolysis. We therefore speculated 

that, at neutral pH, effective Zr(IV)-assisted peptide hydrolysis might be heterogeneous in nature.  

In the future, we aspire to develop new Zr(IV) complexes which substantially increase 

the efficiency and specificity of peptide hydrolysis under physiological conditions of temperature 

and pH. These complexes could one day be utilized as new therapeutic agents designed to target 

disease-related proteins. 
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