652 research outputs found

    Multi-Scale Cardiovascular Flow Analysis by an Integrated Meshless-Lumped Parameter Model

    Get PDF
    A computational tool that integrates a Radial basis function (RBF)-based Meshless solver with a Lumped Parameter model (LPM) is developed to analyze the multi-scale and multi-physics interaction between the cardiovascular flow hemodynamics, the cardiac function, and the peripheral circulation. The Meshless solver is based on localized RBF collocations at scattered data points which allows for automation of the model generation via CAD integration. The time-accurate incompressible flow hemodynamics are addressed via a pressure-velocity correction scheme where the ensuing Poisson equations are accurately and efficiently solved at each time step by a Dual-Reciprocity Boundary Element method (DRBEM) formulation that takes advantage of the integrated surface discretization and automated point distribution used for the Meshless collocation. The local hemodynamics are integrated with the peripheral circulation via compartments that account for branch viscous resistance (R), flow inertia (L), and vessel compliance (C), namely RLC electric circuit analogies. The cardiac function is modeled via time-varying capacitors simulating the ventricles and constant capacitors simulating the atria, connected by diodes and resistors simulating the atrioventricular and ventricular-arterial valves. This multi-scale integration in an in-house developed computational tool opens the possibility for model automation of patient-specific anatomies from medical imaging, elastodynamics analysis of vessel wall deformation for fluid-structure interaction, automated model refinement, and inverse analysis for parameter estimation

    Meshless 2D direct numerical simulation and heat transfer in a backward-facing step with heat conduction in the step

    Get PDF
    A meshless direct pressure-velocity coupling procedure is presented to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of turbulent incompressible flows in regular and irregular geometries. The proposed method is a combination of several efficient techniques found in different Computational Fluid Dynamic (CFD) procedures. With this new procedure, preliminary calculations with 2D steady state flows show that viscous effects become negligible faster that ever predicted numerically. The fundamental idea of this method lays on several important inconsistencies found in three of the most popular techniques used in CFD, segregated procedures, as well as in other formulations. The inconsistencies found become important in elliptic flows and they might lead to some wrong solutions. Preliminary calculations done in 2D laminar flows, suggest that the numerical diffusion and interpolation error are much important at low speeds, mainly when both, viscous and inertia forces are present. With this competitive and efficient procedure, the solution of the 2D Direct Numerical Simulation of turbulent flow with heat transfer on a backward-facing step is presented. The thermal energy is going to be transferred to the fluid through conduction on the step, with both constant temperature and heat flux conditions in the back wall of the step. The variation of the local Nusselt Number through the wall will be studied and its corresponding effect in the energy transfer to the fluid

    Geometry of River Networks II: Distributions of Component Size and Number

    Get PDF
    The structure of a river network may be seen as a discrete set of nested sub-networks built out of individual stream segments. These network components are assigned an integral stream order via a hierarchical and discrete ordering method. Exponential relationships, known as Horton's laws, between stream order and ensemble-averaged quantities pertaining to network components are observed. We extend these observations to incorporate fluctuations and all higher moments by developing functional relationships between distributions. The relationships determined are drawn from a combination of theoretical analysis, analysis of real river networks including the Mississippi, Amazon and Nile, and numerical simulations on a model of directed, random networks. Underlying distributions of stream segment lengths are identified as exponential. Combinations of these distributions form single-humped distributions with exponential tails, the sums of which are in turn shown to give power law distributions of stream lengths. Distributions of basin area and stream segment frequency are also addressed. The calculations identify a single length-scale as a measure of size fluctuations in network components. This article is the second in a series of three addressing the geometry of river networks.Comment: 16 pages, 13 figures, 4 tables, Revtex4, submitted to PR

    Warm-based basal sediment entrainment and far-field Pleistocene origin evidenced in central Transantarctic blue ice through stable isotopes and internal structures

    Get PDF
    Stable isotopes of water (δ18O and δ2H) were measured in the debris-laden ice underlying an Antarctic blue ice moraine, and in adjoining Law Glacier in the central Transantarctic Mountains. Air bubble content and morphology were assessed in shallow ice core samples. Stable isotope measurements plot either on the meteoric waterline or are enriched from it. The data cluster in two groups: the ice underlying the moraine has a δ2H:δ18O slope of 5.35 ± 0.92; ice from adjoining portions of Law Glacier has a slope of 6.69 ± 1.39. This enrichment pattern suggests the moraine's underlying blue ice entrained sediment through refreezing processes acting in an open system. Glaciological conditions favorable to warm-based sediment entrainment occur 30–50 km upstream. Basal melting and refreezing are further evidenced by abundant vapor figures formed from internal melting of the ice crystals. Both the moraine ice and Law Glacier are sufficiently depleted of heavy isotopes that their ice cannot be sourced locally, but instead must be derived from far-field interior regions of the higher polar plateau. Modeled ice flow speeds suggest the ice must be at least 80 ka old, with Law Glacier's ice possibly dating to OIS 5 and moraine ice older still

    Computational Analysis of Hybrid Norwood Circulation with Distal Aortic Arch Obstruction and Reverse Blalock-Taussig Shunt

    Get PDF
    BACKGROUND: The hemodynamics characteristics of the hybrid Norwood (HN) procedure differ from those of the conventional Norwood and are not fully understood. We present a multi-scale model of HN circulation to understand local hemodynamics and effects of aortic arch stenosis and a reverse Blalock-Taussig shunt (RBTS) on coronary and carotid perfusion. METHODS: Four 3-dimensional models of four HN anatomic variants were developed, with and without 90% distal preductal arch stenosis and with and without a 4-mm RBTS. A lumped parameter model of the circulation was coupled to a local 3-dimensional computational fluid dynamics model. Outputs from the lumped parameter model provided waveform boundary conditions for the computational fluid dynamics model. RESULTS: A 90% distal arch stenosis reduced pressure and net flow-rate through the coronary and carotid arteries by 30%. Addition of the RBTS completely restored pressure and flow rate to baseline in these vessels. Zones of flow stagnation, flow reversal, and recirculation in the presence of stenosis were rendered more orderly by addition of the RBTS. In the absence of stenosis, presence of the shunt resulted in extensive zones of disturbed flow within the RBTS and arch. CONCLUSIONS: We found that a 4-mm × 21-mm RBTS completely compensated for the effects of a 90% discrete stenosis of the distal aortic arch in the HN. Placed preventatively, the RBTS and arch displayed zones with thrombogenic potential showing recirculation and stagnation that persist for a substantial fraction of the cardiac cycle, indicating that anticoagulation should be considered with a prophylactic RBTS

    Middle to Late Pleistocene stability of the central East Antarctic Ice Sheet at the head of Law Glacier

    Get PDF
    Past behavior of outlet glaciers draining the East Antarctic Ice Sheet (EAIS) remains unresolved prior to Marine Isotope Stage 2 (MIS2). Study of blue ice moraines provides a relatively untapped approach to understand former EAIS activity. We focus on a blue ice moraine near Mount Achernar in the central Transantarctic Mountains, at the edge of the polar plateau. The well-preserved moraine consists of quasi-continuous or hummocky sediment ridges that form on top of upward-flowing, sublimating ice along the margin of Law Glacier. 10Be, 26Al, and 3He cosmogenic nuclide ages on boulders from the ridges are coherent and in general are progressively older with distance from the relatively clean ice of the Law Glacier margin. Moraines closest to the Law Glacier margin postdate MIS2; farther away, they date to the last glacial cycle, and with more distance they are hundreds of thousands of years old. We conclude that cosmogenic dating of some blue ice moraines can provide age limits for changes at the heads of outlet glaciers that drain the central East Antarctic Ice Sheet, including prior to MIS2. Furthermore, the geomorphological, cosmogenic nuclide, and sedimentological evidence imply that the East Antarctic polar plateau adjacent to the central Transantarctic Mountains has been relatively stable for at least 200 k.y

    Acceptance towards Monkeypox Vaccination: A Systematic Review and Meta-Analysis

    Get PDF
    Vaccination it is considered a vital strategy in order to mitigate monkeypox by protecting from severe disease and helping in reduction of hospitalisations. In this sense, this study aims to estimate the global prevalence of vaccination acceptance against monkeypox. We conducted a systematic review with a comprehensive search strategy for the following databases: PubMed, Scopus and Web of Science. A random-effect model meta-analysis was carried out using observational studies assessing the intention of vaccines against monkeypox from multiple continents. The quality assessment was developed using the Newcastle-Ottawa Scale adapted for cross-sectional studies. In addition, a subgroup analysis by study location and population and a sensitivity analysis was developed.Eleven cross-sectional studies were included. A total of 8045 participants were included. The pooled prevalence of monkeypox vaccination acceptance in all participants was 56.0% (95%CI: 42.0–70.0%). In the subgroup analysis of monkeypox vaccine acceptance according to continents, the prevalence of vaccine acceptance was 50.0% (95%CI: 24.0–76.0%) in Asian countries and 70.0% (95%CI: 55.0–84.0%) in European countries. The prevalence of vaccine acceptance was 43.0% (95%CI: 35.0–50.0%) in the general population, 63.0% (95%CI: 42.0–70.0%) in healthcare workers, and 84.0% (95%CI: 83.0–86.0%) in the LGBTI community. Despite the high prevalence of monkeypox vaccination acceptance in the LGBTI community found in our study, vaccination acceptance from healthcare workers and the general population are lower. Governments could use these results for planning, developing or promoting vaccination strategies and public health policies focused on these populations.Revisión por pare

    Comparison of four mathematical models to analyze indicator-dilution curves in the coronary circulation

    Get PDF
    While several models have proven to result in accurate estimations when measuring cardiac output using indicator dilution, the mono-exponential model has primarily been chosen for deriving coronary blood/plasma volume. In this study, we compared four models to derive coronary plasma volume using indicator dilution; the mono-exponential, power-law, gamma-variate, and local density random walk (LDRW) model. In anesthetized goats (N = 14), we determined the distribution volume of high molecular weight (2,000 kDa) dextrans. A bolus injection (1.0 ml, 0.65 mg/ml) was given intracoronary and coronary venous blood samples were taken every 0.5–1.0 s; outflow curves were analyzed using the four aforementioned models. Measurements were done at baseline and during adenosine infusion. Absolute coronary plasma volume estimates varied by ~25% between models, while the relative volume increase during adenosine infusion was similar for all models. The gamma-variate, LDRW, and mono-exponential model resulted in volumes corresponding with literature, whereas the power-model seemed to overestimate the coronary plasma volume. The gamma-variate and LDRW model appear to be suitable alternative models to the mono-exponential model to analyze coronary indicator-dilution curves, particularly since these models are minimally influenced by outliers and do not depend on data of the descending slope of the curve only
    corecore