10 research outputs found

    Polycation Induced Potential Dependent Structural Transitions of Oligonucleotide Monolayers on Au(111)-Surfaces

    No full text
    We have studied self-assembled molecular monolayers (SAMs) of several 3′-C3-SH conjugated single-strand (ss) and double-strand (ds) 20-base oligonucleotides (ONs) immobilized on single-crystal, atomically planar Au(111)-electrode surfaces in the presence of the triply positively charged base spermidine (Spd). This cation binds strongly to the polyanionic ON backbone and stabilizes the ds-form relative to the ss-form. A combination of chemical ON synthesis, melting temperature measurements, cyclic voltammetry (CV), and <i>in situ</i> scanning tunneling microscopy (STM) in aqueous biological buffer under electrochemical potential control was used. Spd binding was found to increase notably the ds-ON melting temperature. CV displays capacitive features associated with ss- and ds-ON. A robust capacitive peak around −0.35 V versus saturated calomel electrode (SCE), specific to ds-ON and highly sensitive to base pair mismatches, was consistently observed. The peak is likely to be caused by surface structural reorganization around the peak potential and located close to reported peak potentials of several DNA intercalating or covalently tethered redox molecules reported as probes for long-range electron transfer

    Structure−Activity Study of Dihydrocinnamic Acids and Discovery of the Potent FFA1 (GPR40) Agonist TUG-469

    No full text
    [Image: see text] The free fatty acid 1 receptor (FFA1 or GPR40), which is highly expressed on pancreatic β-cells and amplifies glucose-stimulated insulin secretion, has emerged as an attractive target for the treatment of type 2 diabetes. Several FFA1 agonists containing the para-substituted dihydrocinnamic acid moiety are known. We here present a structure−activity relationship study of this compound family suggesting that the central methyleneoxy linker is preferable for the smaller compounds, whereas the central methyleneamine linker gives higher potency to the larger compounds. The study resulted in the discovery of the potent and selective full FFA1 agonist TUG-469 (29)

    Proteomics and Islet Research

    No full text

    Proteomics Proteomics and Islet Research

    No full text
    corecore