3,228 research outputs found

    Insights into intermetallic phases on pulse welded dissimilar metal joints

    Get PDF
    The Magnetic Pulse Welding (MPW) process has been developed to an industrially used joining method which is considered to be a fast, noncontact, clean and "cold" solid state welding process. Unlike fusion welding, the absence of direct heat during the welding cycle makes it possible to join dissimilar metals, for instance aluminium to copper or copper to steel, without noticeable detrimental metallurgical defects. This is very desirable, as today s industry lacks technologies to join often not fusion-weldable dissimilar materials effectively. However, current metallographic studies show that for many material combinations the formation of intermetallic seams in the joint region of magnetic pulse welds can not be completely avoided. Modern technical equipment for MPW is used to join aluminium with copper in order to study the microstructure and the intermetallic phases formed in the weld region in dependence of the processing parameters. The welds are analysed by means of metallographic and electron microscopic (SEM) methods. Relations between the parameters and the microstructures formed within the weld joints are shown. Based on the obtained results conclusions will be drawn with respect to the intermetallic phase formation process and the optimization of the weld microstructure and properties

    Characterizing the Variability of Stars with Early-release Kepler Data

    Get PDF
    We present a variability analysis of the early-release first quarter of data publicly released by the Kepler project. Using the stellar parameters from the Kepler Input Catalog, we have separated the sample into 129,000 dwarfs and 17,000 giants and further sub-divided the luminosity classes into temperature bins corresponding approximately to the spectral classes A, F, G, K, and M. Utilizing the inherent sampling and time baseline of the public data set (30 minute sampling and 33.5 day baseline), we have explored the variability of the stellar sample. The overall variability rate of the dwarfs is 25% for the entire sample, but can reach 100% for the brightest groups of stars in the sample. G dwarfs are found to be the most stable with a dispersion floor of σ ~ 0.04 mmag. At the precision of Kepler, >95% of the giant stars are variable with a noise floor of ~0.1 mmag, 0.3 mmag, and 10 mmag for the G giants, K giants, and M giants, respectively. The photometric dispersion of the giants is consistent with acoustic variations of the photosphere; the photometrically derived predicted radial velocity distribution for the K giants is in agreement with the measured radial velocity distribution. We have also briefly explored the variability fraction as a function of data set baseline (1-33 days), at the native 30 minute sampling of the public Kepler data. To within the limitations of the data, we find that the overall variability fractions increase as the data set baseline is increased from 1 day to 33 days, in particular for the most variable stars. The lower mass M dwarf, K dwarf, and G dwarf stars increase their variability more significantly than the higher mass F dwarf and A dwarf stars as the time baseline is increased, indicating that the variability of the lower mass stars is mostly characterized by timescales of weeks while the variability of the higher mass stars is mostly characterized by timescales of days. A study of the distribution of the variability as a function of galactic latitude suggests that sources closer to the galactic plane are more variable. This may be the result of sampling differing populations (i.e., ages) as a function of latitude or may be the result of higher background contamination that is inflating the variability fractions at lower latitudes. A comparison of the M dwarf statistics to the variability of 29 known bright M dwarfs indicates that the M dwarfs are primarily variable on timescales of weeks or longer presumably dominated by spots and binarity. On shorter timescales of hours, which are relevant for planetary transit detection, the stars are significantly less variable, with ~80% having 12 hr dispersions of 0.5 mmag or less

    Kepler Observations of the Three Pre-Launch Exoplanet Candidates: Discover of Two Eclipsing Binaries and a New Exoplanet

    Get PDF
    Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASA's Kepler mission. Kepler observations of them were obtained during Quarter 1 of the Kepler mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high-resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the Kepler mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the Kepler light curves and pixel data, as well as medium-resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion, while the other is a K0 star plus a late M-dwarf/brown dwarf in a 19 day elliptical orbit. The third candidate (BOKS-1) is an r = 15 G8V star hosting a newly discovered exoplanet with a radius of 1.12 R_(Jupiter) in a 3.9 day orbit

    Programmable 3D snapshot microscopy with Fourier convolutional networks

    Full text link
    3D snapshot microscopy enables fast volumetric imaging by capturing a 3D volume in a single 2D camera image, and has found a variety of biological applications such as whole brain imaging of fast neural activity in larval zebrafish. The optimal microscope design for this optical 3D-to-2D encoding is both sample- and task-dependent, with no general solution known. Highly programmable optical elements create new possibilities for sample-specific computational optimization of microscope parameters, e.g. tuning the collection of light for a given sample structure. We perform such optimization with deep learning, using a differentiable wave-optics simulation of light propagation through a programmable microscope and a neural network to reconstruct volumes from the microscope image. We introduce a class of global kernel Fourier convolutional neural networks which can efficiently decode information from multiple depths in the volume, globally encoded across a 3D snapshot image. We show that our proposed networks succeed in large field of view volume reconstruction and microscope parameter optimization where traditional networks fail. We also show that our networks outperform the state-of-the-art learned reconstruction algorithms for lensless computational photography.Comment: Make zebrafish Types A,B,C,D more clea

    Environmental Benefits and Management of Small Grain Cover Crops in Corn-Soybean Rotations

    Get PDF
    These slides offer research results on cover crops

    Out of pocket expenditures of patients with a chronic condition consulting a primary care provider in Tajikistan: a cross-sectional household survey

    Get PDF
    Within its reform efforts, the Government of Tajikistan is embracing the essential role of primary health care (PHC) in decreasing out of pocket (OOP) expenditures and increasing equity in access to health services. In the light of the increasing burden of disease relating to chronic conditions, we investigated OOP expenditures of patients with chronic conditions within a PHC setting; and if and how those expenditures are impacted by several interventions currently being implemented within Tajikistan.; A cross-sectional survey among 1600 adult patients who had visited a PHC facility was conducted. The data obtained through interviews were descriptively analysed, and logistic regressions and gamma generalized linear models were performed.; The total OOP expenditures related to a patient's last visit to the PHC facility were 17.2 USD for those with chronic conditions and 13.9 USD for those visiting due to an acute condition. Adjustment for potential confounders reduced the discrepancy from 3.3 USD to 0.5 USD. This convergence of costs was only observed in districts covered by the Basic Benefit Package (BBP), a governmental pilot project, aiming to standardise exemptions for payment and formal co-payments for health care services. Hence, we found the BBP to have a protective impact for patients with chronic conditions. However, considering the demographics of these patients (older in age, with greater dependency on pensions and social aid, and lower socio-economic status) in combination with the 40% higher utilisation rate of PHC and the high rate of onward referrals to specialists; it is clear that patients with chronic conditions continue to face substantial long-term costs and disadvantages.; After accounting for confounders, patients with chronic and acute conditions faced similar costs related to a single visit to a PHC facility in districts covered by the BBP. However, greater efforts are required to ensure that citizens are well informed about their rights to health care, the BBP and the services that should be provided at no cost at the point of delivery. Moreover, the needs of patients with chronic conditions warrant a more integrative approach that takes long-term expenditures and services beyond the level of PHC into account

    Pseudo-Haptics for Rigid Tool/Soft Object Interaction Feedback in Virtual Environments

    Get PDF
    This paper proposes a novel pseudo-haptics soft object stiffness simulation technique which is a marked improvement to currently used simulation methods and an effective low-cost alternative to expensive 3-DOF haptic devices. Soft object stiffness simulation is achieved by maneuvering an indenter avatar over the surface of a virtual soft object by means of an input device, such as a mouse, a joystick, or a touch-sensitive tablet. The alterations to the indenter avatar behavior produced by the proposed technique create for the user the illusion of interaction with a hard inclusion embedded in the soft object. The proposed pseudo-haptics technique is validated with a series of experiments conducted by employing three types of 2-DOF force-sensitive haptic surfaces, including a touchpad, a tablet with an S-pen input, and a tablet with a bare finger input. It is found that both the sensitivity and the positive predictive value of hard inclusion detection can be significantly improved by 33.3% and 13.9% respectively by employing tablet computers. Using tablet computers could produce results comparable to direct hand touch in detecting hard inclusions in a soft object. The experimental results presented here confirm the potential of the proposed technique for conveying haptic information in rigid tool / soft object interaction in virtual environments

    Carbon Dioxide Dynamics During a Growing Season in Midwestern Cropping Systems

    Get PDF
    Daily and seasonal CO2-exchange dynamics between the boundary layer and biosphere is important to understanding Net Ecosystem Exchange of terrestrial ecosystems. Spatial and temporal variations of CO2 fluxes across midwestern cropping systems have not been well documented. This study was designed to monitor and evaluate spatial and temporal dynamics of CO2 exchange across a watershed region for typical production fields of corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] in the Midwest by quantifying the above-canopy, within-canopy, and soil components of C balance for this cropping system. An energy-balance approach using eddy covariance was utilized across different fields making year-around measurements in both corn and soybean fields to quantify the exchange of CO2 and H2O between the crop canopy and the atmospheric boundary layer. Within-canopy concentrations of CO2 and H2O vapor were measured with an eight-port CO2/H2O infrared analyzer. Soil respiration was quantified using soil chambers at various landscape positions throughout the growing season. Fluxes of CO2 and H2O vapor throughout the day were dependent on net radiation and the stage of canopy development. Diurnal variations in CO2 and H2O vapor fluxes revealed that the magnitude of the fluxes is large and the variation of the fluxes among fields was consistent throughout the season. Integration of the daily fluxes into seasonal totals showed large differences among crops and fields. Flux differences were the result of the effect of varying soil types on water-holding capacity. Seasonal integrated values were lower than estimates derived from biomass samples collected within the fields and the measurement of the C content of the biomass. Within-canopy recycling of soil CO2 may provide insight to this discrepancy. The techniques are available to quantify the CO2 and H2O vapor fluxes across different management systems and landscapes to help refine our understanding of the magnitude of the CO2 and H2O dynamics in cropping systems
    • …
    corecore