33 research outputs found

    A randomized trial of a standard dose of Edmonston-Zagreb measles vaccine given at 4.5 months of age: effect on total hospital admissions.

    Get PDF
    Observational studies and trials from low-income countries indicate that measles vaccine has beneficial nonspecific effects, protecting against non-measles-related mortality. It is not known whether measles vaccine protects against hospital admissions. Between 2003 and 2007, 6417 children who had received the third dose of diphtheria, tetanus, and pertussis vaccine were randomly assigned to receive measles vaccine at 4.5 months or no measles vaccine; all children were offered measles vaccine at 9 months of age. Using hospital admission data from the national pediatric ward in Bissau, Guinea-Bissau, we compared admission rates between enrollment and the 9-month vaccination in Cox models, providing admission hazard rate ratios (HRRs) for measles vaccine versus no measles vaccine. All analyses were conducted stratified by sex and reception of neonatal vitamin A supplementation (NVAS). Before enrollment the 2 groups had similar admission rates. Following enrollment, the measles vaccine group had an admission HRR of 0.70 (95% confidence interval [CI], .52-.95), with a ratio of 0.53 (95% CI, .32-.86) for girls and 0.86 (95% CI, .58-1.26) for boys. For children who had not received NVAS, the admission HRR was 0.53 (95% CI, .34-.84), with an effect of 0.30 (95% CI, .13-.70) for girls and 0.73 (95% CI, .42-1.28) for boys (P = .08, interaction test). The reduction in admissions was separately significant for measles infection (admission HRR, 0 [95% CI, 0-.24]) and respiratory infections (admission HRR, 0.37 [95% CI, .16-.89]). Early measles vaccine may have major benefits for infant morbidity patterns and healthcare costs. Clinical trials registration NCT00168558

    Using Growth velocity to predict child mortality

    Get PDF
    Background: Growth assessment based on the WHO child growth velocity standards can potentially be used to predict adverse health outcomes. Nevertheless, there are very few studies on growth velocity to predict mortality. Objectives: We aimed to determine the ability of various growth velocity measures to predict child death within 3 mo and to compare it with those of attained growth measures. Design: Data from 5657 children <5 y old who were enrolled in a cohort study in the Democratic Republic of Congo were used. Children were measured up to 6 times in 3-mo intervals, and 246 (4.3%) children died during the study period. Generalized estimating equation (GEE) models informed the mortality risk within 3 mo for weight and length velocity z scores and 3-mo changes in midupper arm circumference (MUAC). We used receiver operating characteristic (ROC) curves to present balance in sensitivity and specificity to predict child death. Results: GEE models showed that children had an exponential increase in the risk of dying with decreasing growth velocity in all 4 indexes (1.2- to 2.4-fold for every unit decrease). A length and weight velocity z score of <−3 was associated with an 11.8- and a 7.9-fold increase, respectively, in the RR of death in the subsequent 3-mo period (95% CIs: 3.9, 35.5, and 3.9, 16.2, respectively). Weight and length velocity z scores had better predictive abilities [area under the ROC curves (AUCs) of 0.67 and 0.69] than did weight-for-age (AUC: 0.57) and length-for-age (AUC: 0.52) z scores. Among wasted children (weight-for-height z score <−2), the AUC of weight velocity z scores was 0.87. Absolute MUAC performed best among the attained indexes (AUC: 0.63), but longitudinal assessment of MUAC-based indexes did not increase the predictive value. Conclusion: Although repeated growth measures are slightly more complex to implement, their superiority in mortality-predictive abilities suggests that these could be used more for identifying children at increased risk of death
    corecore