23 research outputs found
Recommended from our members
CD1a autoreactive T cells recognize natural skin oils that function as headless antigens
CD1a autoreactive T cells are common in human blood and skin, but the search for natural autoantigens has been confounded by background T cell responses to CD1 proteins and self lipids. After capturing CD1a-lipid complexes, we gently eluted ligands, while preserving unliganded CD1a for testing lipids from tissues. CD1a released hundreds of ligands of two types. Inhibitory ligands were ubiquitous membrane lipids with polar headgroups, whereas stimulatory compounds were apolar oils. CD1a autoantigens naturally accumulate in epidermis and sebum, where they were identified as squalene and skin waxes. T cell activation by skin oils suggests that headless mini-antigens nest within CD1a and displace non-antigenic resident lipids with large head groups. Oily autoantigens naturally coat the skin's surface, pointing to a new mechanism of barrier immunity
Saposins utilize two strategies for lipid transfer and CD1 antigen presentation
Funding: We are grateful to A.N. Odyniec, M. Brigl, G.F.M. Watts, and T.Y. Cheng for suggestions and excellent technical assistance. This work was supported by National Institutes of Health (NIH) Grants AI028973 and AI063428 (to M.B.B.), DK36729 and NS36681 (to G.A.G.), and AR048632 and AI049313 (to D.B.M. and A.K.); a Howard Hughes Medical Institute Gilliam Fellowship (to L.L.); the Burroughs Wellcome Fund (D.B.M. and A.K.); a Personal Research Chair from Mr. James Bardrick (to V.B., N.V., and G.S.B.); a Royal Society Wolfson Research Merit Award (to V.B., N.V., and G.S.B.); the Medical Research Council (V.B., N.V., and G.S.B.); Wellcome Trust Grant 084923/B/08/Z (to V.B., N.V., and G.S.B.); and a Netherlands Organization for Scientific Research Grant (to A.J.M.Transferring lipid antigens from membranes into CD1 antigen-presenting proteins represents a major molecular hurdle necessary for T-cell recognition. Saposins facilitate this process, but the mechanisms used are not well understood. We found that saposin B forms soluble saposin protein-lipid complexes detected by native gel electrophoresis that can directly load CD1 proteins. Because saposin B must bind lipids directly to function, we found it could not accommodate long acyl chain containing lipids. In contrast, saposin C facilitates CD1 lipid loading in a different way. It uses a stable, membrane-associated topology and was capable of loading lipid antigens without forming soluble saposin-lipid antigen complexes. These findings reveal how saposins use different strategies to facilitate transfer of structurally diverse lipid antigens.publishersversionpublishe
Recommended from our members
CD1b Tetramers Bind T Cell Receptors to Identify a Mycobacterial Glycolipid-Reactive T Cell Repertoire in Humans
Microbial lipids activate T cells by binding directly to CD1 and T cell receptors (TCRs) or by indirect effects on antigen-presenting cells involving induction of lipid autoantigens, CD1 transcription, or cytokine release. To distinguish among direct and indirect mechanisms, we developed fluorescent human CD1b tetramers and measured T cell staining. CD1b tetramer staining of T cells requires glucose monomycolate (GMM) antigens, is specific for TCR structure, and is blocked by a recombinant clonotypic TCR comprised of TRAV17 and TRBV4-1, proving that CD1b-glycolipid complexes bind the TCR. GMM-loaded tetramers brightly stain a small subpopulation of blood-derived cells from humans infected with Mycobacterium tuberculosis, providing direct detection of a CD1b-reactive T cell repertoire. Polyclonal T cells from patients sorted with tetramers are activated by GMM antigens presented by CD1b. Whereas prior studies emphasized CD8 and CD4CD8 CD1b-restricted clones, CD1b tetramer-based studies show that nearly all cells express the CD4 co-receptor. These findings prove a cognate mechanism whereby CD1b-glycolipid complexes bind to TCRs. CD1b tetramers detect a natural CD1b-restricted T cell repertoire ex vivo with unexpected features, opening a new investigative path to study the human CD1 system
Recommended from our members
Casting a wider net: Immunosurveillance by nonclassical MHC molecules
Most studies of T lymphocytes focus on recognition of classical major histocompatibility complex (MHC) class I or II molecules presenting oligopeptides, yet there are numerous variations and exceptions of biological significance based on recognition of a wide variety of nonclassical MHC molecules. These include αβ and γδ T cells that recognize different class Ib molecules (CD1, MR-1, HLA-E, G, F, et al.) that are nearly monomorphic within a given species. Collectively, these T cells can be considered “unconventional,” in part because they recognize lipids, metabolites, and modified peptides. Unlike classical MHC-specific cells, unconventional T cells generally exhibit limited T-cell antigen receptor (TCR) repertoires and often produce innate immune cell-like rapid effector responses. Exploiting this system in new generation vaccines for human immunodeficiency virus (HIV), tuberculosis (TB), other infectious agents, and cancer was the focus of a recent workshop, “Immune Surveillance by Non-classical MHC Molecules: Improving Diversity for Antigens,” sponsored by the National Institute of Allergy and Infectious Diseases. Here, we summarize salient points presented regarding the basic immunobiology of unconventional T cells, recent advances in methodologies to measure unconventional T-cell activity in diseases, and approaches to harness their considerable clinical potential
A molecular assay for sensitive detection of pathogen-specific T-cells.
Here we describe the development and validation of a highly sensitive assay of antigen-specific IFN-γ production using real time quantitative PCR (qPCR) for two reporters--monokine-induced by IFN-γ (MIG) and the IFN-γ inducible protein-10 (IP10). We developed and validated the assay and applied it to the detection of CMV, HIV and Mycobacterium tuberculosis (MTB) specific responses, in a cohort of HIV co-infected patients. We compared the sensitivity of this assay to that of the ex vivo RD1 (ESAT-6 and CFP-10)-specific IFN-γ Elispot assay. We observed a clear quantitative correlation between the two assays (P<0.001). Our assay proved to be a sensitive assay for the detection of MTB-specific T cells, could be performed on whole blood samples of fingerprick (50 uL) volumes, and was not affected by HIV-mediated immunosuppression. This assay platform is potentially of utility in diagnosis of infection in this and other clinical settings
Prospective Monitoring Reveals Dynamic Levels of T Cell Immunity to Mycobacterium Tuberculosis in HIV Infected Individuals
Monitoring of latent Mycobacterium tuberculosis infection may prevent disease. We tested an ESAT-6 and CFP-10-specific IFN-γ Elispot assay (RD1-Elispot) on 163 HIV-infected individuals living in a TB-endemic setting. An RD1-Elispot was performed every 3 months for a period of 3–21 months. 62% of RD1-Elispot negative individuals were positive by cultured Elispot. Fluctuations in T cell response were observed with rates of change ranging from −150 to +153 spot-forming cells (SFC)/200,000 PBMC in a 3-month period. To validate these responses we used an RD1-specific real time quantitative PCR assay for monokine-induced by IFN-γ (MIG) and IFN-γ inducible protein-10 (IP10) (MIG: r = 0.6527, p = 0.0114; IP-10: r = 0.6967, p = 0.0056; IP-10+MIG: r = 0.7055, p = 0.0048). During follow-up 30 individuals were placed on ARVs and 4 progressed to active TB. Fluctuations in SFC did not correlate with CD4 count, viral load, treatment initiation, or progression to active TB. The RD1-Elispot appears to have limited value in this setting
TCR bias and affinity define two compartments of the CD1b-glycolipid-specific T cell repertoire
Current views emphasize TCR diversity as a key feature that differentiates the group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 systems. Whereas TCR sequence motifs define CD1d-reactive NKT cells, the available data do not allow a TCR-based organization of the group 1 CD1 repertoire. The observed TCR diversity might result from donor-to-donor differences in TCR repertoire, as seen for MHC-restricted T cells. Alternatively, diversity might result from differing CD1 isoforms, Ags, and methods used to identify TCRs. Using CD1b tetramers to isolate clones recognizing the same glycolipid, we identified a previously unknown pattern of V gene usage (TRAV17, TRBV4-1) among unrelated human subjects. These TCRs are distinct from those present on NKT cells and germline-encoded mycolyl lipid–reactive T cells. Instead, they resemble the TCR of LDN5, one of the first known CD1b-reactive clones that was previously thought to illustrate the diversity of the TCR repertoire. Interdonor TCR conservation was observed in vitro and ex vivo, identifying LDN5-like T cells as a distinct T cell type. These data support TCR-based organization of the CD1b repertoire, which consists of at least two compartments that differ in TCR sequence motifs, affinity, and coreceptor expression
Impairment of CD1d-Restricted Natural Killer T Cells in Chronic HIV Type 1 Clade C Infection
Recent studies suggest that natural killer T (NKT) cells play a role in early antiviral pathogenesis and are rapidly depleted in chronic human immunodeficiency virus type 1 (HIV-1) clade B infection. We aimed to characterize the phenotypic and functional characteristics of NKT cells in HIV-1 clade C-infected Africans at different stages of HIV-1 disease. NKT cell frequencies, subsets, and ex vivo effector functions were assessed using multiparametric flow cytometry in a cross-sectional analysis of cryopreserved peripheral blood mononuclear cells from a cohort of 53 HIV-1 clade C chronically infected South African adults with CD4 T cell counts ranging from 94 to 839 cells/μl. We observed a significant decline of NKT cell numbers in advanced HIV-1 disease as well as activation and functional impairment of NKT cells in individuals with low CD4 T cell counts. The loss of NKT cells was largely driven by a reduction in the CD4+ and CD4–CD8– NKT cell subsets in advanced disease. These findings demonstrate significant impairment of the NKT cell compartment in progressive HIV-1 clade C disease that might play an important role in the modulation of immune function in HIV-1 infection
TCR Bias and Affinity Define Two Compartments of the CD1b–Glycolipid-Specific T Cell Repertoire
Current views emphasize TCR diversity as a key feature that differentiates the group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 systems. Whereas TCR sequence motifs define CD1d-reactive NKT cells, the available data do not allow a TCR-based organization of the group 1 CD1 repertoire. The observed TCR diversity might result from donor-to-donor differences in TCR repertoire, as seen for MHC-restricted T cells. Alternatively, diversity might result from differing CD1 isoforms, Ags, and methods used to identify TCRs. Using CD1b tetramers to isolate clones recognizing the same glycolipid, we identified a previously unknown pattern of V gene usage (TRAV17, TRBV4-1) among unrelated human subjects. These TCRs are distinct from those present on NKT cells and germline-encoded mycolyl lipid–reactive T cells. Instead, they resemble the TCR of LDN5, one of the first known CD1b-reactive clones that was previously thought to illustrate the diversity of the TCR repertoire. Interdonor TCR conservation was observed in vitro and ex vivo, identifying LDN5-like T cells as a distinct T cell type. These data support TCR-based organization of the CD1b repertoire, which consists of at least two compartments that differ in TCR sequence motifs, affinity, and coreceptor expression