11 research outputs found
One Anastomosis Gastric Bypass Reconstitutes the Appropriate Profile of Serum Amino Acids in Patients with Morbid Obesity
Bariatric surgery leads to metabolic benefits in patients with obesity, but their mechanisms are not well understood. The appropriate composition of serum amino acids (AA) is important for sufficient supply of these components into various tissues and organs. Obesity leads to alterations in serum AA concentrations. The aim of this study was to examine the effect of one anastomosis gastric bypass (OAGB), a promising type of bariatric surgery, on serum AA concentrations, which were assayed by LC-MS in serum of 46 bariatric patients prior to and 6–9 months after OAGB, as well as in 30 lean control subjects. The results were analyzed by principle components analysis and metabolic pathway analysis. PCA analysis showed that OAGB led to normalization of serum AA concentrations of patients with obesity to a pattern similar to the control subjects, and the concentrations of essential AA remained decreased after OAGB. Changes of individual AA and their associated metabolic pathways were also presented. OAGB caused normalization of the AA profile, which may contribute to improvement of glucose homeostasis and reduction of cardiovascular risk. Considering decreased essential AA concentrations after OAGB, increased intake of high protein food should be recommended to the patients after this type of bariatric surgery
Association Between Cytosolic Glycerol 3-Phosphate Dehydrogenase Gene Expression in Human Subcutaneous Adipose Tissue and BMI
Background/Aims: Cytosolic glycerol 3-phosphate dehydrogenase (cGPDH) is a key enzyme providing glycerol 3-phosphate for triacylglycerol synthesis in adipose tissue and is regarded as a marker for adipocyte differentiation. The aim of this study was to test the hypothesis that an increase in cGPDH gene expression in subcutaneous adipose tissue is associated with obesity. Methods: mRNA levels in human subcutaneous adipose tissue were analysed by Real-Time PCR. Results: We found that human subcutaneous adipose tissue cGPDH activity and cGPDH mRNA level were greater in obese patients than in lean subjects and were positively correlated with BMI and fat mass. Moreover, a strong positive correlation between subcutaneous adipose tissue cGPDH mRNA level and cGPDH activity was found. The data presented here indicates also that PPARγ mRNA level is positively correlated with body mass index and fat mass as well as with adipose tissue cGPDH mRNA level. Moreover, the association between subcutaneous adipose tissue cGPDH mRNA level and fatty acid translocase (FAT/CD36) mRNA level was also observed. Conclusion: The obtained results suggest that in comparison to lean subjects the increase in subcutaneous adipose tissue cGPDH gene expression in the obese, is probably the result of adipose tissue expansion during obesity
The Relationship Between Specific Fatty Acids of Serum Lipids and Serum High Sensitivity C- Reactive Protein Levels in Morbidly Obese Women
Background/Aims: The fatty acid profile in plasma lipids contributes to the increase of plasma high sensitivity C-reactive protein (hsCRP), a marker of inflammation and predictor of cardiovascular risk. The aim of this study was to examine the relationship between specific fatty acids (FA) of serum lipids and serum hsCRP in morbidly obese woman. Methods: The study included 16 morbidly obese (mean BMI= 43 ± 2.2 kg/m2) non-diabetic woman awaiting bariatric surgery. FA extracted from serum lipids were methylated and analyzed on GC-MS. Commercially available ELISA kits were used to determine the serum inflammatory markers. Results: We demonstrated that total saturated FA (SFA) and total monounsaturated FA (MUFA) of serum lipids were positively correlated with serum hsCRP, whereas both n-3 and n-6 total polyunsaturated FA (PUFA) were negatively correlated with serum hsCRP. Serum interleukin-6 correlated positively with some SFA and MUFA, whereas negatively with some of PUFA. Positive correlation between serum hsCRP and specific SFA and MUFA or negative correlation with PUFA decreased with the increased FA chain length. The number and localization of double bonds also had impact on these correlations. Conclusion: Our findings suggest that individual serum lipid FA levels, depending on the length of FA chain, number and the localization of double bonds are distinctly associated with hsCRP in morbidly obese subjects
Comprehensive cancer-oriented biobanking resource of human samples for studies of post-zygotic genetic variation involved in cancer predisposition
The progress in translational cancer research relies on access to well-characterized samples from a representative number of patients and controls. The rationale behind our biobanking are explorations of post-zygotic pathogenic gene variants, especially in non-tumoral tissue, which might predispose to cancers. The targeted diagnoses are carcinomas of the breast (via mastectomy or breast conserving surgery), colon and rectum, prostate, and urinary bladder (via cystectomy or transurethral resection), exocrine pancreatic carcinoma as well as metastases of colorectal cancer to the liver. The choice was based on the high incidence of these cancers and/or frequent fatal outcome. We also collect age-matched normal controls. Our still ongoing collection originates from five clinical centers and after nearly 2-year cooperation reached 1711 patients and controls, yielding a total of 23226 independent samples, with an average of 74 donors and 1010 samples collected per month. The predominant diagnosis is breast carcinoma, with 933 donors, followed by colorectal carcinoma (383 donors), prostate carcinoma (221 donors), bladder carcinoma (81 donors), exocrine pancreatic carcinoma (15 donors) and metachronous colorectal cancer metastases to liver (14 donors). Forty percent of the total sample count originates from macroscopically healthy cancer-neighboring tissue, while contribution from tumors is 12%, which adds to the uniqueness of our collection for cancer predisposition studies. Moreover, we developed two program packages, enabling registration of patients, clinical data and samples at the participating hospitals as well as the central system of sample/data management at coordinating center. The approach used by us may serve as a model for dispersed biobanking from multiple satellite hospitals. Our biobanking resource ought to stimulate research into genetic mechanisms underlying the development of common cancers. It will allow all available "-omics" approaches on DNA-, RNA-, protein- and tissue levels to be applied. The collected samples can be made available to other research groups