40 research outputs found

    Pressure-driven magnetic moment collapse in the ground state of MnO

    Get PDF
    The zero temperature Mott transition region in antiferromagnetic, spin S=5/2 MnO is probed using the correlated band theory LSDA+U method. The first transition encountered is an insulator-insulator volume collapse within the rocksalt structure that is characterized by an unexpected Hund's rule violating `spin-flip' moment collapse. This spin-flip to S=1/2 takes fullest advantage of the anisotropy of the Coulomb repulsion, allowing gain in the kinetic energy (which increases with decreasing volume) while retaining a sizable amount of the magnetic exchange energy. While transition pressures vary with the interaction strength, the spin-flip state is robust over a range of interaction strengths and for both B1 and B8 structures

    Interplay of antiferromagnetism, ferromagnetism and superconductivity in EuFe_2(As_1-xP_x)_2 single crystals

    Get PDF
    We report a systematic study on the influence of antiferromagnetic and ferromagnetic phases of Eu^2+ moments on the superconducting phase upon doping the As site by isovalent P, which acts as chemical pressure on EuFe_2As_2. Bulk superconductivity with transition temperatures of 22 K and 28 K are observed for x=0.16 and 0.20 samples respectively. The Eu ions order antiferromagnetically for x=0.22 whereupon the Eu ions order ferromagnetically. Density functional theory based calculations reproduce the observed experimental findings consistently. We discuss in detail the coexistence of superconductivity and magnetism in a tiny region of the phase space and comment on the competition of ferromagnetism and superconductivity in the title compound.Comment: 6 pages, 5 figures, 1 tabl

    SmO thin films: a flexible route to correlated flat bands with nontrivial topology

    Full text link
    Using density functional theory based calculations, we show that the correlated mixed-valent compound SmO is a 3D strongly topological semi-metal as a result of a 4ff-5dd band inversion at the X point. The [001] surface Bloch spectral density reveals two weakly interacting Dirac cones that are quasi-degenerate at the M_bar-point and another single Dirac cone at the Gamma_bar-point. We also show that the topological non-triviality in SmO is very robust and prevails for a wide range of lattice parameters, making it an ideal candidate to investigate topological nontrivial correlated flat bands in thin-film form. Moreover, the electron filling is tunable by strain. In addition, we find conditions for which the inversion is of the 4f-6s type, making SmO to be a rather unique system. The similarities of the crystal symmetry and the lattice constant of SmO to the well studied ferromagnetic semiconductor EuO, makes SmO/EuO thin film interfaces an excellent contender towards realizing the quantum anomalous Hall effect in a strongly correlated electron system.Comment: Paper+supplemen

    Origin of ferromagnetism in Cs2_2AgF4_4: importance of Ag - F covalency

    Full text link
    The magnetic nature of Cs2_{2}AgF4_{4}, an isoelectronic and isostructural analogue of La2_2CuO4_4, is analyzed using density functional calculations. The ground state is found to be ferromagnetic and nearly half metallic. We find strong hybridization of Ag-dd and F-pp states. Substantial moments reside on the F atoms, which is unusual for the halides and reflects the chemistry of the Ag(II) ions in this compound. This provides the mechanism for ferromagnetism, which we find to be itinerant in character, a result of a Stoner instability enhanced by Hund's coupling on the F

    Impurity-induced bound states inside the superconducting gap of FeSe

    Full text link
    We investigate the local density of states in the vicinity of a native dumbbell defect arising from an Fe vacancy in FeSe single crystals. The tunneling spectra close to the impurity display two bound states inside the superconducting gap, equally spaced with respect to zero energy but asymmetric in amplitude. Using spin-polarized density functional theory (DFT) calculations on realistic slab models with Fe vacancy, we show that such a defect does not induce a local magnetic moment. Therefore, the dumbbell defect is considered as non-magnetic. Thus, the in-gap bound states emerging from a non-magnetic defect-induced pair-breaking suggest a sign changing pairing state in this material.Comment: 8 pages, 6 figure

    Origin of Strong Coupling in Lithium under Pressure

    Full text link
    In an attempt to provide a clearer understanding of the impressive increase in T_c under pressure in elemental Li, linear response calculation of the phonon dispersion curves, electron-phonon matrix elements, phonon linewidths and mode lambda's have been carried out on a finer mesh (24^3 in the Brillouin zone) than done previously, for the volume corresponding to 20 GPa pressure. The result illustrates the great need for a fine mesh (even finer than this) for converged results of lambda and the spectral function alpha^2 F. Although the initial pressure-induced transverse T_1 phonon instability (in harmonic approximation) near the symmetry point K has dominated attention, the current results show that the high value of T_c gets strong contributions from elsewhere in the zone, particularly from the longitudinal mode along (100).Comment: Proceedings for M2

    Bulk electronic structure of non-centrosymmetric EuTGe3 (T= Co, Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    Get PDF
    Non-centrosymmetric EuTGe3 (T=Co, Ni, Rh, and Ir) possesses magnetic Eu2+ ions and antiferromagnetic ordering appears at low temperatures. Transition metal substitution leads to changes of the unit cell volume and of the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric EuTGe3 (T=Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core level spectrum confirms the robust Eu2+ valence state against the transition metal substitution with a small contribution from Eu3+. The estimated Eu mean-valence is around 2.1 in these compounds as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon changing the transition metal from 3d to 4d to 5d elements, hinting of a change in the Ge-T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations

    Magnetic properties of single nanomagnets: EMCD on FePt nanoparticles

    Full text link
    Energy-loss magnetic chiral dichroism (EMCD) allows for the quantification of magnetic properties of materials at the nanometer scale. It is shown that with the support of simulations that help to identify the optimal conditions for a successful experiment and upon implementing measurement routines that effectively reduce the noise floor, EMCD measurements can be pushed towards quantitative magnetic measurements even on individual nanoparticles. With this approach, the ratio of orbital to spin magnetic moments for the Fe atoms in a single L101_0 ordered FePt nanoparticle is determined to be ml/ms=0.08±0.02{m_l}/{m_s} = 0.08 \pm 0.02. This finding is in good quantitative agreement with the results of XMCD ensemble measurements.Comment: 35 pages, 10 figure
    corecore