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Abstract. The zero temperature Mott transition region in antiferromagnetic,
spin S=

5
2 MnO is probed using the correlated band theory LSDA + U method.

The first transition encountered is an insulator–insulator volume collapse within
the rocksalt structure that is characterized by an unexpected Hund’s rule violating
‘spin-flip’ moment collapse. This spin-flip toS=

1
2 takes fullest advantage of

the anisotropy of the Coulomb repulsion, allowing gain in the kinetic energy
(which increases with decreasing volume) while retaining a sizable amount of the
magnetic exchange energy. While transition pressures vary with the interaction
strength, the spin-flip state is robust over a range of interaction strengths and for
both B1 and B8 structures.
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The insulator-metal transition (IMT) in correlated systems (the Mott transition) is one of the
most actively studied topics in condensed matter systems [1]. The original, and most studied,
model is that of the single-band Hubbard model (1HM), characterized simply by bandwidth
W and on-site repulsion strengthU . Roughly speaking, forU/W > 1 it is an insulator
characterized by localized states and local moments, while forU/W < 1 the system is a non-
magnetic metal characterized by itinerant states. In a more general model, the onset of itineracy
would lead to increased bonding, hence a volume collapse at the transition. It has recently
been emphasized that degenerate multiorbital atoms (N orbitals) with multielectron magnetic
moments behave very differently. The critical interaction/bandwidth becomes(U/W)c ≈

√
N

or even larger [2], due to the increase in conduction (hopping) channels. Another issue is that
of a possible orbital selective Mott transition, where only some of the orbitals undergo an IMT
transition [3]–[5] depending on the interactions and the anisotropy of the hopping processes.

A much less studied question, one we address here, is how a multielectron local moment
disintegrates under reduction of volume. While the moment may be considered to be enforced
by the strong interactionU (as in the 1 HM), the inter-orbital Hund’s coupling is also a strong
factor because it will tend to promote a moment even in the itinerant phase. Anisotropic bonding
(hopping processes) causes variation in bandwidths, and the moment collapse may be orbital
selective: some but not all orbitals may become spin-paired (doubly occupied), or selected spins
may simply flip as the kinetic energy overcomes the Hund’s coupling but not the Coulomb
repulsion. Pressure-driven collapses of magnetic signals reported inM2+I2 compounds (M = V,
Mn, Fe, Co, Ni) [6] and FeO [7], initially interpreted as Mott transitions, have been reinterpreted
as magnetic (dis)ordering transitions rather than magnetic collapse [8]. In this paper, we provide
predictions for the moment collapse transition in antiferromagnetic (AFM) MnO atT = 0,
which proceeds by a different route than any yet envisioned.

The Mott transition in MnO at room temperature has recently been revealed through
transport [9] and spectroscopic [10, 11] data at high pressure. Occurring entirely within the
(spin) disordered phase, there is an insulator–insulator structural transformation B1 (rocksalt)
→ B8 (NiAs) at 90 GPa, followed by an IMT + moment collapse transition at 105 GPa. In fact,
this (room temperature) Mott transition at 105 GPa is the first observed for a 3d monoxide. FeO
is reported to remain a magnetic insulator to 143 GPa [8]. Unlike for these room temperature
experiments where the moments are disordered, the magnetic ground state phases we address
will be ordered, and the resulting symmetry lowering [12] and reduced fluctuations are found to
affect the character, and probably the mechanism, of the transition.

Previous theoretical work on MnO at reduced volume has been carried out almost entirely
in the local spin density approximation (LSDA) and generalized gradient approximation
(GGA) [12]–[15]. In these approximations, the small gap at ambient volume rapidly closes
leading to metallization at much too small a volume. The resulting occupation of minority
t2g states at the expense of majorityeg states leads to a continuous decrease of the calculated
moment well before the volume collapse, or moment collapse, transition. Restricted to the B1
structure, GGA gives a metal-to-metal moment collapse from 3.5 to 1.2µB at 150 GPa [13]. The
main high pressure phase is expected to be the B8 (NiAs) structure [14], and both the crystal and
site symmetry and structural relaxation have been shown to affect predictions strongly [12, 15].
Fanget aldid apply the LSDA + U method to the high volume phase to improve their picture of
the Mott transition.

To study the pressure behaviour of MnO, we have carried out total energy LSDA + U
calculations (described below) for both low and high pressure phases. It has recently been
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shown that metal-to-insulator transitions, and even charge disproportion and ordering can be
modelled realistically with the LSDA + U method [16]. The low pressure structure of MnO
is well established: it is an AFM NaCl structure with aligned spins in〈111〉 Mn layers,
antiparallel with adjacent layers (AFMII). In our calculations, we have neglected the small
rhombohedral distortion angle. There are two simple arrangements of the Mn spins in the
B8 phase, ferromagnetic (FM) or AFM. Calculations, including structural optimization, show
the AFM phase to be energetically favourable by 0.2 eV per formula unit, for a wide range of
pressures.

Results we present below use the LSDA + U method [17] in the rotationally invariant
form [18] as implemented in version 5.20 of the full-potential local orbital band structure
method (FPLO [19, 20])5. The implementation of the LSDA + U method in this code has been
provided in detail by Eschriget al [24]. The all-electron aspect of this code is important,
since even small-core pseudopotentials cannot reproduce all-electron results under volume
reduction [25]. The full-potential aspect can be important also, on the oxygen site as well
as on the Mn site, and the non-spherical aspect of the potential will grow as the volume is
reduced. Due to the unexpected nature of the reduced spin state, several results were checked,
and reproduced, using the Wien2k code [26]. LSDA+U gives two distinct spin states for both B1
and B8 structures: a low pressure high-spin (HS)S=

5
2 configuration and a high pressure, low-

spin (LS)S=
1
2 state. The equation of state (EOS) curves are displayed in figure1. From the

enthalpies we obtain a first-order magnetic transition from HS-B1 to LS-B1 atPc1 = 123 GPa,
followed by a structural transition to LS-B8 atPc2 = 130 GPa. The isostructural volume collapse
at Pc1 is ≈ 5% . However, these results vary with the choice ofU andJ (we use 5.5 and 1.0 eV
respectively), which is discussed later. This part of our results has been compared with those
of other correlated band theory results recently [27]. An unusual feature of the present results
is the persistence of the LSDA + U bandgap up to higher pressures, beyond the observed IMT
at room temperature [9]. Thus the magnetic and structural transitions we discuss are always
insulator-to-insulator, and for the magnetically ordered state atT = 0.

To help in understanding the mechanism of the transition, the densities of states (DOS)
projected on to each of thè= 2 irreducible representations are displayed in figure2, referenced
to the rhombohedral axis of the B1 AFMII phase, and equivalently the hexagonal axis of the B8
structure. Not evident from this figure are two potentially important features [28]. Firstly, the
‘charge transfer’ energy increases as the volume decreases; i.e., the O 2p levels drop in energy
relative to the Mn 3d states, reflecting anincreasedtendency toward the fully ionic limit that
competes with the increased hybridization as the Mn and O ions approach each other. Secondly,
the crystal field splitting betweenEg andT2g states increases under pressure, which competes
with Hund’s exchange and with correlation effects.

In each case the Mn site symmetry splits the 5 d-orbitals into two doubletse|m|

g , |m| = 1, 2,
with e1

g → {xz, yz}; e2
g → {x2

− y2, xy}, and a singletag → 3z2
− r 2(m = 0). The actual state

5 A single numerical basis set for the core states (Mn1s2s2p and O 1s) and a double numerical basis set for the
valence sector including two 4s and 3d radial functions, and one 4p radial function, for Mn, and two 2s and 2p radial
functions, and one 3d radial function, for O was used. The semi core states (Mn 3s3p) are treated as valence states
with a single numerical radial function pernl-shell. We have used the strong local moment form of the LSDA
double-counting correction [17], [21]–[23] that has been become known as the ‘atomic-limit’ (AL) form (see
equation (9) in [23]). The Slater parameters were chosen according toU = F0 = 5.5 eV, J =

1
14(F2 + F4) = 1 eV

andF2/F4 = 8/5.
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Figure 1. The calculated total energy/MnO versus volume for the low pressure
(NaCl) and high pressure (NiAs) structures of MnO. The filled symbols denote
the calculated energies and the continuous lines are the least square fitted
curves to the Murnaghan EOS for HS and LS configurations respectively.
The inset clearly elucidates the order of the transitions, NaCl (HS)→ NaCl
(LS) → NiAs(LS).
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Figure 2. LSDA+U DOS, at the indicated volumes, projected onto symmetrized
Mn 3d orbitals in (left panels) the rhombohedral B1 AFMII phase and (right
panels) the B8 AFM structure. In each case, the top subpanel is for the HS
state, while the bottom is for the LS state. See the text for the definition of
the ag, e1

g, e2
g labels. The overriding feature is the spin-reversal of them = ±1
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Figure 3. Isosurface plots of Mn ion spin density, with red and blue shading
indicating opposite sign. Left: before collapse, showing the sphericalS=

5
2 ion,

with (111) layers of aligned spins. Right: after collapse, revealing the anisotropic
S=

1
2 ion. The magnetic order remains AFMII.

realized at a given volume or structure is characterized by twoeg pairs, obtained by unitary
mixing, schematically:

ea
g = cosβe1

g − sinβ ′e2
g, eb

g = sinβe1
g + cosβe2

g. (1)

We have observed and quantified the mixing angleβ versus pressure, but near the critical
pressure it simplifies toβ ≈ 0.

The HS states in both B1 and B8 structures are simple—each 3d orbital is filled once
with spins aligned leading to anS=

5
2 spherical ion. The LS DOS for both structures reveal

the essence of the HS–LS transition: the LS state is obtained by simply flipping the spins of
the e1

g orbitals. This result shows how the LSDA + U method differs in an essential way from
LSDA, where the moment decreases continually with volume [13], metallization occurs at low
pressure, and decrease of the moment implies rapid collapse of the exchange splitting, resulting
in doubly occupied orbitals with zero net spin. In this LS state, each of the 3d orbitals remains
singly occupied, the charge density remains spherical while the spin density becomes highly
anisotropic, as illustrated vividly in figure3.

To understand the origin of this spin-flip state, we have performed an analysis of the
LSDA + U method. The flavour we have used is the AL [21]–[23]. We consider first the pressure-
induced change in kinetic energy relative to the potential energy of the HS and LS states. We
first note that thee1

g states, whose spins flip in the LS state, are2
3 Eg and only1

3T2g in terms of
the cubic states we are more familiar with. For thee2

g pair this ratio is opposite, and close to the
overall mean(2

5 Eg,
3
5T2g) . It is the cubicEg states (and consequently thee1

g pair) that have the
strongest (dpσ ) overlap with O ions, and thus are most affected by pressure and give the greatest
gain in kinetic energy.

Now we consider the effects of the very large anisotropy of the LS Mn ion. To separate the
effects ofU from those ofJ, we split the energy expression into the isotropic interaction, and
the remaining anisotropic part:EAL

= Eaniso+ Eiso. The isotropic part reads

Eiso
=

1

2
(U − J)

∑
s

Tr
[
ns (1− ns)

]
> 0, (2)

wherens is the spin-dependent occupation number matrix of the 3d shell, and Tr denotes a
trace of the orbital indices. It is easily seen thatEiso takes its minima for integer occupations, in
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which case we getEiso
= 0. However, the resulting potential matrix, to be added to the Kohn–

Sham Hamiltonian, is nonzero and has the effect of lowering occupied orbitals by−
1
2 (U − J),

while raising unoccupied orbitals by12 (U − J). This separation stabilizes insulating magnetic
solutions, and also favours HS exchange energy contributions from the magnetic part of the
LSDA functional. This tendency opposes the observed HS–LS transition, but operates equally
independent of volume. The action of the isotropic term is often the dominating effect of the
LSDA + U method, but the common practice of discussing the effects of the LSDA + U method
in the isotropic limit misses the physics of this transition, as we now illustrate.

The anisotropic term reads (in the representation in whichns is diagonal, for simplicity)

Eaniso
=

1

2

∑
ss′

∑
µm

ns
m[1Umµ − δss′1Jmµ]ns′

µ. (3)

The interaction matrix elements are defined as1Umµ = wmµ
mµ −U , 1Jmµ = wµm

mµ − J − (U −

J)δmµ in terms of the full matrix interactionwmµ
mµ, and these differences donotcontainU (whose

effect is included entirely in the isotropic term). These differences describepure anisotropy;
summation of either index of either one gives a vanishing result. Thus a filled spin subshell will
not contribute toEaniso, as expected intuitively.

The HS state is favoured by the LSDA spin polarization. However, the LS state still has
all fully polarized orbitals, so the energy difference will be much smaller than for usual LSDA
S=

5
2 and S=

1
2 moments. The resulting ratio of exchange energies can be estimated from

the integral over the square of the spin density, which gives a valueE1/2/E5/2 ≈ 0.31. This
reduction of exchange energy in the LS state is much less dramatic than the estimate from the
simple formulaEx = −

JStoner
4 M2. A more detailed explanation of this energy ratio is given in the

appendix.
The LS configuration requires theag orbital to be singly occupied. The remaining four

electrons are then distributed in pairs among theea,b
g doublets. Analysis shows that the two

occupation patterns for which the electrons doubly occupy either thee1
g or e2

g orbitals have
the same anisotropy energy of aboutEaniso>−0.3J; a spread of energies arises from allowed
mixing of eg symmetries. The resulting spin density of such states hasag-derived shape.

The remaining two patterns are obtained by occupyingea
g in the up-channel andeb

g in the
down-channel or vice versa, both of which results in strongly anisotropic spin densities. The
lowest energy ofEaniso

≈ −1.85 J is obtained when thee2
g andag are occupied in the same spin

channel, whilee1
g is occupied in the opposite channel (note, the mixing angleβ = 0). The other

solution(e1↑

g ‖ a↑

g ) hasEaniso
≈ −1.14 J. The dependence of the energies on the mixing angle

complicates the discussion.
However, there is a gap of≈ 0.84 J between the spin-flipped and non-spin-flipped

solutions, which is not closed by any mixing. It turns out that this gap is due to the density–
density anisotropy (1U in equation (3)), which pushes the (density-) non-spherical non spin-
flipped patterns up in energy, while it is zero for the (density-) spherical spin-flipped patterns.
The exchange and self-interaction-correction contribution to the anisotropy (1J in equation (3))
is nearly of the same size for the non spin-flipped and spin-flipped occupation patterns, and
hence does not change the energy separation of these pattern classes. However, it further
discriminates the two spin-flipped patterns.

The anisotropy (which is solely controlled by, and proportional to,J in the LSDA+U
method) of the interaction favours an occupation pattern which maximizes the spatial distance
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between the electrons (under the constraint ofS=
1
2), while the isotropic term∝ U − J merely

selects insulating over metallic solutions. We indeed find that both the spin-flipped and non-
spin flipped solutions may be found in LSDA + U calculations, separated by an energy of
the order derived here. WhenJ is decreased to zero, the energy difference between these
solutions shrinks, leaving only the LSDA anisotropy energy difference, which turns out to be
very small: about 0.3 eV at ambient pressure and decreasing to zero close to the transition. Of
course the LSDA part of the functional includes some anisotropy effects, however the main
difference in the influence of the LSDA-anisotropy and theJ-anisotropy equation (1) is its
action on the Kohn–Sham states. The LSDA potential contributions act on all states, while
the LSDA + U potential matrix acts orbital selective. It is this very selectivity, which makes
the whole LSDA + U machinery work, by mimicking the suppression of occupation number
fluctuations due to correlations. In the same way as the Hubbard band split is not attainable in
LSDA, the anisotropy effects are largely suppressed. This suppression is nicely confirmed by
the observation of the vanishing energy difference between the two LS solutions as described
above.

With increasing pressure the kinetic energy gain becomes more and more competitive with
the exchange energy due more to the increasing crystal field splitting than to the bandwidth. This
competition usually leads to a (partial) collapse of the magnetic moment. LSDA calculations
give a moment of about 1.5µB at our transition pressure, which is far from the HS value of
5µB thus clearly showing that at the transition pressure Hund’s first rule is strongly suppressed.
In the LSDA + U method, the isotropic term forces the HS solution to have full spin-moment,
while the LS solution allows a larger gain in kinetic energy, hence bringing along a transition
from HS to LS at some pressure. The anisotropy contribution of LSDA + U is zero for the HS
state and negative for the flipped LS state. This will further lower the energy of the flipped LS
state against the HS state, resulting in a lower transition pressure. Moreover, this anisotropy
contribution is smaller for a non-spin-flipped solution, which rules out this solution. Since the
anisotropy term offers a way to keep a sizable amount of magnetic exchange energy, while
gaining kinetic energy, it is this ‘unusual’ state, which is realized after the transition.

We have described here how LSDA + U energies for MnO under pressure predict an
unexpected mode of collapse of the Mn moment at zero temperature: each of the 3d orbitals
remains polarized, and anS=

5
2 –S=

1
2 reduction arises from a simple spin-flip of the

symmetry-determinede1
g doublet that has the strongest overlap with neighbouring O 2p orbitals.

This S=
1
2 moment in the high pressure phase is consistent with the interpretation of x-ray

emission data by Rueffet al [11]; Yoo et al were less specific about the value of the (clearly
small) high pressure moment but presumed total collapse. The partial spin-flip collapse obtained
here occurs in both the B1 (rocksalt) and B8 (NiAs) structures, calculated by two different codes,
and occurs at similar volumes.

The transition we find is first-order and insulator-to-insulator, both of which insinuate the
smallness of fluctuation effects and make the LSDA + U approach an appropriate one. Due to
the imprecisely known values ofU and J there is an associated uncertainty for the calculated
EOS, which depends on the values chosen. The functional dependence of these interaction
energies (U , J) on the density is not known and we have neglected the volume dependence.
The Wien2k code [26] includes a constrained LSDA algorithm that enables calculation ofU ,
resulting in a value of 6.5 eV for both for the equilibrium volume and close to the transition.
To identify the range of variation, we performed EOS calculations for various values ofU and
J. The resulting transition pressures are depicted in figure4. As should be expected from the
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Figure 4. Dependence of the HS to ‘spin-flip’ LS transition on the parameters,
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importance of the correlation corrections, the transition pressurePc(U, J) is quite dependent
on the parameters. For all values ofU , Pc decreases with increasingJ. The strong variation
confirms our analysis above, which identified the anisotropy (proportional toJ) as crucial in
determining the ground state at a given volume. The energy separation of the HS and LS curves
decreases withJ, and this change decreases the transition pressure (the shape dependence of
the energy curves onJ is minor). On the other hand, the potential matrix element effects (which
shift the corresponding eigenvalues) tend to increase the Hubbard splitting with increasingU ,
which moves to stabilize the HS solution against the LS solution and leads to a monotonic
increase ofPc with U . Note that for reasonable values ofJ = 0.6–1 eV, the dependence onU
lessens compared to stronger variation for unreasonably small values ofJ. The very much too
large transition pressure forJ = 0 eV compared to experiment is a strong argument that the
anisotropy effects are not sufficiently described by the LSDA part of the functional and hence
have to be included in an orbital selective manner.

Although the occupation number fluctuations at this transition should not be a big factor,
as the volume is reduced and the bandwidth increases, these fluctuations will tend to increase.
The effect can be modelled by adopting a smallerU than the ambient pressure value; hence the
value of 5.5 eV that was used for most results presented here becomes justified. On the other
hand, the value ofJ is only weakly screened by the environment, and it is sensible to choose
a volume-independent value that resembles the atomic/ionic situation, where one usually finds
J = 0.7–1 eV for transition metals. Altogether, the calculated transition pressures vary between
100 and 170 GPa for a reasonable choice ofJ, which is quite satisfactory given the uncertainties
of the LSDA + U approach. One should also keep in mind that the zero temperature transition is
expected to occur at a higher pressure than at room temperature.

However, we want to stress our main point. Although the LSDA + U method is not capable
of precise predictions ofPc due to the uncertainties just discussed, thespin-flip characterof
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the predicted ground state is highly stable against changes of the interaction parameters. For all
parameter sets corresponding to the data points in figure4, we obtain the spin-flip LS solution
as the ground state.

Now we summarize: for MnO atT = 0 in the AFM ordered phase, an unusual moment
collapseS=

5
2 →

1
2 is predicted before the Mott transition (metallization, or itineracy of the 3d

states). These results are robust: the spin-flip state is obtained by two different codes, and for
a substantial range of choices ofU and J. The value ofU = 5.5 eV used here corresponds to
U/W ∼ 1.5 in terms of the full 3d bandwidthW. The role ofJ is central to this transition, but
in an unexpected way. Hund’s first rule, which is encouraged by the spin-exchange aspect ofJ,
is violated at the transition, whereas the anisotropic Coulomb repulsion that is proportional to
J becomes the driving force. Together with an orbitally-dependent increase in kinetic energy,
the result is an orbitally-selective spin-flip collapse of the moment at an insulator-to-insulator
transition.

The order and type of transitions under pressure we obtain differ from those observed at
room temperature [9, 10]. It is established however that structural phase boundaries can be
strongly temperature dependent in transition metal oxides [29], so there is no contradiction. The
predicted pressure range is accessible to diamond anvil cell experiments, and the ordered-phase
moment can be probed by Mössbauer spectroscopy [6].
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Appendix

The modern flavour of LSDA + U explicitly excludes Hund’s first rule from the expression
added to the functional, arguing that this contribution is dealt with better within the LSDA
part of the functional. In order to obtain estimates of this LSDA-contribution, we will derive an
approximate expression for the LSDA xc-energyExc suitable for the situation we discussed in
this paper.

We expandExc up to second-order in variations of the density. A natural choice for a
reference density would be a spherically averaged non-spin-polarized density around the atom
centre. We denote the reference density byρ0. Our interest is in the effect of different orbital
occupations on the magnetic ion. We can describe the spin-density of thel -shell by

ρs(r) =

∑
mn

φlm(r)ns
m,nφ

∗

ln(r),

where ns
m,n denotes the generalized occupation number matrix for spins = ±1, φlm(r ) are

suitable orbitals and the indicesm, n run over the orbitals of the shell. In the usual manner
one can write the orbitals as fixed atom-like functions

φlm(r) = Rl (r )Ylm(r̂ ),
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putting the flexibility into the occupation number matrix. We can introduce the occupation
number matrixn =

∑
s ns for the charge densityρ(r) =

∑
s ρs(r) and the occupation number

matrix m =
∑

s sns for the magnetization densitym(r) =
∑

s sρs(r) . The particle number of
the spin channels is Ns

= Trns, which gives the total number of particles asN =
∑

s Ns and
the magnetic moment asM =

∑
s sNs. The spherical and spin average ofρs is included in

the definition of the reference density, hence the density variation due to different occupation
patterns is

δρs(r) = [R(r )]2
∑
mn

Ylm(r̂ )δns
m,nY∗

ln(r̂ ), (A.1)

where the variation of the occupation numbersδns is measured with respect to the averaged
occupation numbers (1 = 2l + 1)

ns
mn,0 = δmn

N

21
.

Since the reference density is non-polarized the variation of the magnetization density equals
the magnetization density itself:m = δm , m(r) = δm(r).

To keep things simple, we restrict the discussion to the local-density form of the xc-energy

Exc =

∫
ρε(ρ+, ρ−) d3r.

The second-order variational expansion around the reference density then reads

Exc = Exc,0 +
∫

Vxc,0(r )δρ(r) d3r +
∫

Bxc,0(r )m(r) d3r

+1
2

∫ [
P0(r )(δρ(r))2 + 2Q0(r )(δρ(r)m(r)) + K0(r )(m(r))2

]
d3r.

The xc-potential and the second-order xc-kernels are spherical due to our spherical
reference density (Vxc,0(r ) = Vxc,0(r )) and the xc-field is zero, since the reference density is
non-polarized. Using this information and the shape of the density variation equation (A.1) we
arrive at

Exc = Exc,0 + v0δN + 1
2

∑
mnm′n′

[ p0δnmnδnm′n′ + 2q0δnmnmm′n′ + k0mmnmm′n′] amn,m′n′

with the variation of the particle numberδN = Tr δn , with the angular coefficients

amn,m′n′ = 4π

∫
Ylm(r̂ )Yln(r̂ )Ylm′(r̂ )Yln′(r̂ ) d�, (A.2)

and with the radial integrals

v0 =

∫
Vxc,0(r )[Rl (r )]2r 2 dr, k0 =

1

4π

∫
K0(r )[Rl (r )]4r 2 dr, (A.3)

p0 =
1

4π

∫
P0(r )[Rl (r )]4r 2 dr, (A.4)

q0 =
1

4π

∫
Q0(r )[Rl (r )]4r 2 dr. (A.5)
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For l 6 2 and real spherical harmonics we obtain

amn,m′n′ =
1

1 + 2
[δmnδm′n′ + 2δmn′δnm′ ] , (A.6)

which leads to the simple expression

Exc = Exc,0 + v0δN +
1

2(1 + 2)

×
[
p0(δN)2 + 2q0δN M + k0M22p0 Tr(δn)2 + 4q0 Tr(δnm) + 2k0 Tr(m)2)

]
.

In discussing the MnO case, we consider only 3d5 occupation patterns, henceδN = 0. For
a spherical magnetic occupation pattern we have to setδns

mn = δmn
sM
1

, δnmn = 0 , δmmn =

δmn
M
1

, resulting inδExc =
k0
2 M2 , which suggest the interpretationk0 = −

I
2 with the Stoner

parameterI .
For the HS and spin-flipped LS pattern (SF–LS) we getδn = 0 , since these patterns

correspond to a spherical charge density. The magnetic occupation numbers are diagonal and
equal to±1, hence Trm2

= 1 . So we get

δEHS
xc = −

I

4
M2

= −
I

4
25,

δESF–LS
xc = −

I

4
M2

−
I

4

2

1 + 2

(
1 Tr m2

− M2
)
= −

I

4
1−

I

4

48

7
= −

I

4

55

7
.

The SF–LS energy contains a large contribution, which is related to the non-sphericity of the
spin-density. It accounts for≈ 7/8th of the whole xc-energy of this configuration. The ratio
between the energies of these two configurations isESF–LS/EHS = 11/35≈ 0.31.

For the non-spin-flipped pattern (NSF–LS) the diagonal occupation number matrices read
δn = (1, −1, 0, −1, 1) andδm = (0, 0, 1, 0, 0), which gives for the change in xc-energy

δENSF–LS
xc = −

I

4
M2

−
I

4

2

1 + 2

(
1 Tr(m)2

− M2
)
−

I

4

p0

k0

21

1 + 2
Tr(δn)2

= −
I

4
1−

I

4

8

7
−

I

4

p0

k0

40

7
.

Again, the second term is due to the non-sphericity of the spin density. However, it is much
smaller than for the flipped case. The third term, proportional top0 is related to the non-
sphericity of the charge density of the shell. Estimates ofp0 from actual calculations give a
value of p0 ≈

1
2k0 , hence the third term is roughly of the same size as the sum of the first two

terms:δENSF−LS
xc ≈ −

I
45, which is only two-thirds of the energy of the spin flipped case.
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