2,614 research outputs found

    Agricultural growth and structural changes in the Punjab economy: an input-output analysis

    Get PDF
    Agriculture Economic aspects India Punjab., Punjab (India) Economic conditions., Input-output analysis India Punjab.,

    Study on flow properties of rotor grade steel

    Get PDF
    Compression tests were performed on Gleeble 3800 Thermo-Mechanical Simulator to study the flow properties of rotor grade steel 28CrMoNiV59. Compression specimens were deformed at a constant strain rate of 10-3 s-1. The temperature range during tests was between room temperature and 1000°C with an interval of 100°C. When the normalized flow stress was plotted as a function of temperature, it exhibited three different regions. In regions I and III flow stress decreases with increase in temperature but the same increases with temperature in region II. Microstructural changes and work hardening behaviour have been studied for the deformed specimen. Furthermore, TEM analysis was also done for the samples of these three different regions (I, II & III). Strain hardening rate as a function of the normalized flow stresses decreases at larger strain and become negligible at higher temperature

    Hinode/Extreme-Ultraviolet Imaging Spectrometer Observations of the Temperature Structure of the Quiet Corona

    Full text link
    We present a Differential Emission Measure (DEM) analysis of the quiet solar corona on disk using data obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on {\it Hinode}. We show that the expected quiet Sun DEM distribution can be recovered from judiciously selected lines, and that their average intensities can be reproduced to within 30%. We present a subset of these selected lines spanning the temperature range log⁥\log T = 5.6 to 6.4 K that can be used to derive the DEM distribution reliably. The subset can be used without the need for extensive measurements and the observed intensities can be reproduced to within the estimated uncertainty in the pre-launch calibration of EIS. Furthermore, using this subset, we also demonstrate that the quiet coronal DEM distribution can be recovered on size scales down to the spatial resolution of the instrument (1"" pixels). The subset will therefore be useful for studies of small-scale spatial inhomogeneities in the coronal temperature structure, for example, in addition to studies requiring multiple DEM derivations in space or time. We apply the subset to 45 quiet Sun datasets taken in the period 2007 January to April, and show that although the absolute magnitude of the coronal DEM may scale with the amount of released energy, the shape of the distribution is very similar up to at least log⁥\log T ∌\sim 6.2 K in all cases. This result is consistent with the view that the {\it shape} of the quiet Sun DEM is mainly a function of the radiating and conducting properties of the plasma and is fairly insensitive to the location and rate of energy deposition. This {\it universal} DEM may be sensitive to other factors such as loop geometry, flows, and the heating mechanism, but if so they cannot vary significantly from quiet Sun region to region.Comment: Version accepted by ApJ and published in ApJ 705. Abridged abstrac

    Constraints on the Heating of High Temperature Active Region Loops: Observations from Hinode and SDO

    Full text link
    We present observations of high temperature emission in the core of a solar active region using instruments on Hinode and SDO. These multi-instrument observations allow us to determine the distribution of plasma temperatures and follow the evolution of emission at different temperatures. We find that at the apex of the high temperature loops the emission measure distribution is strongly peaked near 4 MK and falls off sharply at both higher and lower temperatures. Perhaps most significantly, the emission measure at 0.5 MK is reduced by more than two orders of magnitude from the peak at 4 MK. We also find that the temporal evolution in broad-band soft X-ray images is relatively constant over about 6 hours of observing. Observations in the cooler SDO/AIA bandpasses generally do not show cooling loops in the core of the active region, consistent with the steady emission observed at high temperatures. These observations suggest that the high temperature loops observed in the core of an active region are close to equilibrium. We find that it is possible to reproduce the relative intensities of high temperature emission lines with a simple, high-frequency heating scenario where heating events occur on time scales much less than a cooling time. In contrast, low-frequency heating scenarios, which are commonly invoked to describe nanoflare models of coronal heating, do not reproduce the relative intensities of high temperature emission lines and predict low-temperature emission that is approximately an order of magnitude too large. We also present an initial look at images from the SDO/AIA 94 A channel, which is sensitive to Fe XVIII.Comment: Movies are available at http://tcrb.nrl.navy.mil/~hwarren/temp/papers/active_region_core/ Paper has been refereed and revise

    Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity

    Full text link
    We study the interaction of an atom with a quantum guided field in a weakly driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian and derive the density-matrix equations for the combined atom-cavity system. We calculate the mean photon number, the second-order photon correlation function, and the atomic excited-state population. We show that, due to the confinement of the guided cavity field in the fiber cross-section plane and in the space between the FBG mirrors, the presence of the atom in the FBG cavity can significantly affect the mean photon number and the photon statistics even though the cavity finesse is moderate, the cavity is long, and the probe field is weak.Comment: Accepted for Phys. Rev.

    Antibacterial finish of textile using papaya peels derived silver nanoparticles

    Get PDF
    The present study is aimed at the extracellular synthesis of highly stable silver nanoparticles for the development of nanosafe textile using the extracts of yellow papaya peel. Fabric is treated with nanoparticles using dip and dry method to observe the effect of antibacterial activity. The synthesized nanoparticles are also characterized and quantified. Due to their potent antibacterial activity, papaya peels derived silver nanoparticles can be incorporated into fabrics and the manufacturers can make textiles free from spoilage by microorganisms

    FK Comae Berenices, King of Spin: The COCOA-PUFS Project

    Get PDF
    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Com (HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with Hubble Space Telescope in the UV (120-300 nm), using mainly its high-performance Cosmic Origins Spectrograph, but also high-precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of time scales, over all wavelengths, during the week-long main campaign, including a large X-ray flare; "super-rotational broadening" of the far-ultraviolet "hot-lines" (e.g., Si IV 139 nm (T~80,000 K) together with chromospheric Mg II 280 nm and C II 133 nm (10,000-30,000 K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences, and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution.Comment: to be published in ApJ

    Spiral instability can drive thermonuclear explosions in binary white dwarf mergers

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.We thank James Guillochon, Lars Bildsten, Matthew Wise, and Gunnar Martin Lellep for useful discussions and Matthias Aegenheyster for his contributions to the FLASH analysis codes. E.G.B. acknowledges support from MCINN grant AYA2011–23102, and from the European Union FEDER fund. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Simulations at UMass Dartmouth were performed on a computer cluster supported by NSF grant CNS-0959382 and AFOSR DURIP grant FA9550-10-1-0354. This research has made use of NASA's Astrophysics Data System and the yt astrophysics analysis software suite Turk et al. (2011). R.T.F. is grateful to have had the opportunity to complete this paper during a visit to the Kavli Institute for Theoretical Physics, which is supported in part by the National Science Foundation under grant No. NSF PHY11-25915

    One-armed spiral instability in double-degenerate post-merger accretion disks

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.Increasing observational and theoretical evidence points to binary white dwarf mergers as the origin of some if not most normal Type Ia supernovae (SNe Ia). In this paper, we discuss the post-merger evolution of binary white dwarf (WD) mergers, and their relevance to the double-degenerate channel of SNe Ia. We present 3D simulations of carbon-oxygen (C/O) WD binary systems undergoing unstable mass transfer, varying both the total mass and the mass ratio. We demonstrate that these systems generally give rise to a one-armed gravitational spiral instability. The spiral density modes transport mass and angular momentum in the disk even in the absence of a magnetic field, and are most pronounced for secondary-to-primary mass ratios larger than 0.6. We further analyze carbon burning in these systems to assess the possibility of detonation. Unlike the case of a 1.1 + 1.0M C/O WD binary, we find that WD binary systems with lower mass and smaller mass ratios do not detonate as SNe Ia up to ∌ 8−22 outer dynamical times. Two additional models do however undergo net heating, and their secular increase in temperature could possibly result in a detonation on timescales longer than those considered hereWe thank James Guillochon, Daan Van Rossum, Chris Byrohl, and Pranav Dave for useful discussions. We also would like to thank the anonymous reviewer for their useful comments and insights. The work of EG-B, GA-S and PL-A was partially funded by MINECO AYA2014-59084-P grant and by the AGAUR. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This work used the Extreme Science and Engineering discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Simulations at UMass Dartmouth were performed on a computer cluster supported by NSF grant CNS-0959382 and AFOSR DURIP grant FA9550-10-1-0354. RTF thanks the Institute for Theory and Computation at the Harvard-Smithsonian Center for Astrophysics, and the Kavli Institute for Theoretical Physics, supported in part by the national Science Foundation under grant NSF PHY11-25915, for visiting support during which this work was completed. This research has made use of resources from NASA’s Astrophysics Data System and the yt astrophysics analysis software suite (Turk et al. 2011)
    • 

    corecore