1,916 research outputs found

    In-silico single nucleotide polymorphisms (SNP) mining of Sorghum bicolor genome

    Get PDF
    Single nucleotide polymorphisms (SNPs) may be considered the ultimate genetic markers as they represent the finest resolution of a DNA sequence (a single nucleotide), and are generally abundant in populations with a low mutation rate. SNPs are important tools in studying complex genetic traits and genome evolution. SNP mining can be done by experimental and computational methods. Computational strategies for SNP discovery make use of a large number of sequences present in public databases [in most cases as expressed sequence tags (ESTs)] and are considered to be faster and more cost-effective than experimental procedures. A major challenge in computational SNP discovery is distinguishing allelic variation from sequence variation between paralogous sequences, in addition to recognizing sequencing errors. For the majority of the public EST sequences, trace or quality files are lacking which makes detection of reliable SNPs even more difficult because it has to rely on sequence comparisons only. In the present study, online SNP and allele detection tool HaploSNPer (based on QualitySNP pipeline) and Sorghum bicolor genome was used. As a result, 77094 potential SNPs and 40589 reliable SNPs were detected in S. bicolor. In the 77094 potential SNPs detectedtransitions, transversions and indels were 34398, 35871 and 6825, respectively. In the 40589 reliable SNPs detected transitions, transversions and indels were 17042, 20500 and 3047, respectively.Key words: Single nucleotide polymorphisms (SNP), expressed sequence tags (EST), HaploSNPer

    Skin Cancer Prediction Model Based on Multi-Layer Perceptron Network

    Get PDF
    Melanoma is acknowledged by the World Health Organization as the most severe type of skin cancer, significantly contributing to skin cancer-related deaths worldwide. This type of cancer manifests through noticeable changes in moles, including their size, shape, colour, or texture. In this study, we introduce an innovative and robust method for detecting and classifying melanoma in various image types, including both basic and clinical dermatological images. Our approach employs the HSV (Hue, Saturation, and Value) colour model, along with mathematical morphology and Gaussian filtering techniques. These methods are used to pinpoint the area of interest in an image and compute four key descriptors crucial for melanoma analysis: symmetry, border irregularity, colour variation, and dimension. Despite the prior usage of these descriptors over an extended period, the manner in which they are calculated in this proposal is a key factor contributing to the improvement of the outcomes. Following this, a multilayer perceptron is utilized for the purpose of categorizing malignant and benign melanoma. The study included three datasets consisting of basic and dermatological photographs that are frequently referenced in academic literature. These datasets were applied to both train and assess the effectiveness of the proposed technique. Based on the results obtained from k-fold cross-validation, it is evident that the proposed model surpasses three existing state-of-the-art approaches. In particular, the model demonstrates remarkable precision, with an accuracy rate of 98.5% for basic images and 98.6% for clinical dermatological images. It exhibits a high level of sensitivity, measuring 96.68% for simple images and 98.05% for dermatological images. Additionally, its specificity stands at 98.15% when analyzing basic images and 98.01% for dermatological images, indicating its effectiveness in both types of image analysis. The findings have demonstrated that the utilization of this gadget as an assistive tool for melanoma diagnosis would enhance levels of reliability in comparison to traditional methods

    Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health BeneïŹts, Bioaccessibility, and Dietary Applications

    Get PDF
    Based on the availability of many nutrients, Moringa oleifera tree leaves have been widely employed as nutrients and nutraceuticals in recent years. The leaves contain a small amount of anti-nutritional factors and are abundant in innumerable bioactive compounds. Recently, in several in vivo and in vitro investigations, moringa leaves’ bioactive components and functionality are highlighted. Moringa leaves provide several health advantages, including anti-diabetic, antibacterial, anti-cancer, and anti-inflammatory properties. The high content of phytochemicals, carotenoids, and glucosinolates is responsible for the majority of these activities as reported in the literature. Furthermore, there is growing interest in using moringa as a value-added ingredient in the development of functional foods. Despite substantial study into identifying and measuring these beneficial components from moringa leaves, bioaccessibility and bioavailability studies are lacking. This review emphasizes recent scientific evidence on the dietary and bioactive profiles of moringa leaves, bioavailability, health benefits, and applications in various food products. This study highlights new scientific data on the moringa leaves containing nutrient and bioactive profiles, bioavailability, health benefits, and uses in various food items. Moringa has been extensively used as a health-promoting food additive because of its potent protection against various diseases and the widespread presence of environmental toxins. More research is needed for utilization as well as to study medicinal effects and bioaccesibility of these leaves for development of various drugs and functional foods.info:eu-repo/semantics/publishedVersio

    Evaluation of pharmacotherapy in neonatal and pediatric intensive care unit of a south Indian tertiary care hospital: a prospective observational study

    Get PDF
    Background: Evaluating the pharmacotherapy is essential at neonatal intensive care unit (NICU) and pediatric intensive care unit (PICU) to identify and understand pattern and variability in drug use in polypharmacy, also to promote interventions that will improve patient outcomes.Methods: In our study, we audited pharmacotherapy of 300 neonates and 100 pediatric patients admitted to NICU and PICU from November 2018 to February 2019. WHO-CORE prescribing indicators, WHO-ATC system and WHO-ICD 10th version was used to evaluate pharmacotherapy and to understand the pattern and extent of medication use and to systematically classify drugs and diseases respectively.Results: A total of 1207 medications containing 34 unique active ingredients were prescribed for 300 neonates with an average of 4.02 (±2.0) drugs per neonate admitted to NICU and the most prescribed drugs were anti-infectives for systemic use 799. A total of 976 medications containing 69 unique active ingredients were prescribed with an average of 9.76 (±3.81) per pediatric patients admitted to PICU with anti-infectives for systemic use 331 tops the list. More than 75% of drugs was prescribed in generic name with 98% constant availability of key drugs at intensive care unit.Conclusions: This study substantiates the need for reinforcement of institutional antibiotic policies as antibiotics are widely prescribed and there is an increase trend of antibiotic resistance at critical care unit, assessment of WHO core prescribing indicators are reflective of quality care revealing the awareness about strict monitoring of pharmacotherapy

    Detailed diagnostics of an X-ray flare in the single giant HR 9024

    Get PDF
    We analyze a 96 ks Chandra/HETGS observation of the single G-type giant HR 9024. The high flux allows us to examine spectral line and continuum diagnostics at high temporal resolution, to derive plasma parameters. A time-dependent 1D hydrodynamic model of a loop with half-length L=5×1011L = 5 \times 10^{11} cm (∌R⋆/2\sim R_{\star}/2), cross-section radius r=4.3×1010r = 4.3 \times 10^{10} cm, with a heat pulse of 15 ks and 2×10112 \times 10^{11}~erg cm−2^{-2} s−1^{-1} deposited at the loop footpoints, satisfactorily reproduces the observed evolution of temperature and emission measure, derived from the analysis of the strong continuum emission. For the first time we can compare predictions from the hydrodynamic model with single spectral features, other than with global spectral properties. We find that the model closely matches the observed line emission, especially for the hot (∌108\sim 10^8 K) plasma emission of the FeXXV complex at ∌1.85\sim 1.85\AA. The model loop has L/R⋆∌1/2L/R_{\star} \sim 1/2 and aspect ratio r/L∌0.1r/L \sim 0.1 as typically derived for flares observed in active stellar coronae, suggesting that the underlying physics is the same for these very dynamic and extreme phenomena in stellar coronae independently on stellar parameters and evolutionary stage.Comment: 26 pages. Accepted for publication on the Astrophysical Journa

    Soft X-ray emission lines of Fe XV in solar flare observations and the Chandra spectrum of Capella

    Full text link
    Recent calculations of atomic data for Fe XV have been used to generate theoretical line ratios involving n = 3-4 transitions in the soft X-ray spectral region (52-83 A), for a wide range of electron temperatures and densities applicable to solar and stellar coronal plasmas. A comparison of these with solar flare observations from a rocket-borne spectrograph (XSST) reveals generally good agreement between theory and experiment. In particular, the 82.76 A emission line in the XSST spectrum is identified, for the first time to our knowledge in an astrophysical source. Most of the Fe XV transitions which are blended have had the species responsible clearly identified, although there remain a few instances where this has not been possible. The line ratio calculations are also compared with a co-added spectrum of Capella obtained with the Chandra satellite, which is probably the highest signal-to-noise observation achieved for a stellar source in the 25-175 A soft X-ray region. Good agreement is found between theory and experiment, indicating that the Fe XV lines are reliably detected in Chandra spectra, and hence may be employed as diagnostics to determine the temperature and/or density of the emitting plasma. However the line blending in the Chandra data is such that individual emission lines are difficult to measure accurately, and fluxes may only be reliably determined via detailed profile fitting of the observations. The co-added Capella spectrum is made available to hopefully encourage further exploration of the soft X-ray region in astronomical sources.Comment: 27 pages, 10 figures, Astrophysical Journal, in pres

    A new technique for laser cooling with superradiance

    Full text link
    We present a new theoretical scheme for laser cooling of rare earth doped solids with optical super-radiance (SR), which is the coherent, sharply directed spontaneous emission of photons by a system of laser excited rare earth ions in the solid state host (glass or crystal). We consider an Yb3+ doped ZBLAN sample pumped at the wavelength 1015 nm with a rectangular pulsed source with a power of ~433W and duration of 10ns. The intensity of the SR is proportional to the square of the number of excited ions. This unique feature of SR permits a dramatic increase in the rate of the cooling process in comparison with the traditional laser cooling of the rare earth doped solids with anti-Stokes spontaneous incoherent radiation (fluorescence). This scheme overcomes the limitation of using only low phonon energy hosts for laser cooling.Comment: 10 pages,6 figure
    • 

    corecore