52 research outputs found
In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide
<p>Abstract</p> <p>Background</p> <p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) produced by vaginal lactobacilli is generally believed to protect against bacteria associated with bacterial vaginosis (BV), and strains of lactobacilli that can produce H<sub>2</sub>O<sub>2 </sub>are being developed as vaginal probiotics. However, evidence that led to this belief was based in part on non-physiological conditions, antioxidant-free aerobic conditions selected to maximize both production and microbicidal activity of H<sub>2</sub>O<sub>2</sub>. Here we used conditions more like those <it>in vivo </it>to compare the effects of physiologically plausible concentrations of H<sub>2</sub>O<sub>2 </sub>and lactic acid on a broad range of BV-associated bacteria and vaginal lactobacilli.</p> <p>Methods</p> <p>Anaerobic cultures of seventeen species of BV-associated bacteria and four species of vaginal lactobacilli were exposed to H<sub>2</sub>O<sub>2</sub>, lactic acid, or acetic acid at pH 7.0 and pH 4.5. After two hours, the remaining viable bacteria were enumerated by growth on agar media plates. The effect of vaginal fluid (VF) on the microbicidal activities of H<sub>2</sub>O<sub>2 </sub>and lactic acid was also measured.</p> <p>Results</p> <p>Physiological concentrations of H<sub>2</sub>O<sub>2 </sub>(< 100 μM) failed to inactivate any of the BV-associated bacteria tested, even in the presence of human myeloperoxidase (MPO) that increases the microbicidal activity of H<sub>2</sub>O<sub>2</sub>. At 10 mM, H<sub>2</sub>O<sub>2 </sub>inactivated all four species of vaginal lactobacilli but only one of seventeen species of BV-associated bacteria. Moreover, the addition of just 1% vaginal fluid (VF) blocked the microbicidal activity of 1 M H<sub>2</sub>O<sub>2</sub>. In contrast, lactic acid at physiological concentrations (55-111 mM) and pH (4.5) inactivated all the BV-associated bacteria tested, and had no detectable effect on the vaginal lactobacilli. Also, the addition of 10% VF did not block the microbicidal activity of lactic acid.</p> <p>Conclusions</p> <p>Under optimal, anaerobic growth conditions, physiological concentrations of lactic acid inactivated BV-associated bacteria without affecting vaginal lactobacilli, whereas physiological concentrations of H<sub>2</sub>O<sub>2 </sub>produced no detectable inactivation of either BV-associated bacteria or vaginal lactobacilli. Moreover, at very high concentrations, H<sub>2</sub>O<sub>2 </sub>was more toxic to vaginal lactobacilli than to BV-associated bacteria. On the basis of these <it>in vitro </it>observations, we conclude that lactic acid, not H<sub>2</sub>O<sub>2</sub>, is likely to suppress BV-associated bacteria <it>in vivo</it>.</p
A family of Type VI secretion system effector proteins that form ion-selective pores
This work was supported by the Wellcome Trust (104556/Z/14/Z, Senior Fellowship in Basic Biomedical Science to S.J.C.; 097818/Z/11/B and 109118/Z/15/Z, PhD studentships to University of Dundee), the MRC (MR/K000111X/1, New Investigator Research Grant to S.J.C.) and the Royal Society of Edinburgh (Biomedical Personal Research Fellowship to S.J.P.). We thank Roland Freudl for the gift of anti-OmpA antibody; Adam Ostrowski for construction of strains AO07 and AO08; Gal Horesh, Amy Dorward and Gavin Robertson for expert assistance; the Flow Cytometry and Cell Sorting Facility at the University of Dundee; and the Dundee Imaging Facility (supported by Wellcome Trust [097945/B/11/Z] and MRC [MR/K015869/1]) awards).Type VI secretion systems (T6SSs) are nanomachines widely used by bacteria to deliver toxic effector proteins directly into neighbouring cells. However, the modes of action of many effectors remain unknown. Here we report that Ssp6, an anti-bacterial effector delivered by a T6SS of the opportunistic pathogen Serratia marcescens, is a toxin that forms ion-selective pores. Ssp6 inhibits bacterial growth by causing depolarisation of the inner membrane in intoxicated cells, together with increased outer membrane permeability. Reconstruction of Ssp6 activity in vitro demonstrates that it forms cation-selective pores. A survey of bacterial genomes reveals that genes encoding Ssp6-like effectors are widespread in Enterobacteriaceae and often linked with T6SS genes. We conclude that Ssp6 and similar proteins represent a new family of T6SS-delivered anti-bacterial effectors.Publisher PDFPeer reviewe
Characterization of the yehUT Two-Component Regulatory System of Salmonella enterica Serovar Typhi and Typhimurium
10.1371/journal.pone.0084567PLoS ONE812-POLN
- …