342 research outputs found

    Local transport characteristics of break junction in Sr(2)RuO(4) microbridge

    Get PDF
    We have measured tunnel conductance of spin-triplet superconductor Sr(2)RuO(4) (SRO) break junction which was made by micro fabrication technique with a focused ion beam. This is a new type of tunnel junctions made of SRO, which is different from those made of SRO and other materials. Since the tunnel conductance is sensitive to the internal phase of superconductivity, it enables us to examine the chiral p-wave pairing state, which is the most probable candidate of SRO. The tunnel conductance spectrum of the junction showed a broad zero-bias conductance peak whose shape is different from that of high-T(c) cuprate superconductors. The shape of the spectrum is in quite good agreement with the calculated spectrum of a chiral p-wave/insulator/normal metal junction.ArticlePHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS. 471(21-22):708-710 (2011)journal articl

    Possible observation of energy level quantization in an intrinsic Josephson junction

    Full text link
    Energy level quantization (ELQ) is studied to clarify the macroscopic quantum dynamics of the d-wave Josephson junction (JJ). The influences of the nodal quasiparticles of d-wave superconductivity on the damping effect are numerically evaluated on the basis of a phenomenological model. The calculation, based on realistic parameters for a Bi2Sr2CaCu2O8+d (Bi2212) intrinsic JJ, shows that the observation of ELQ is possible when the sweep rate of the bias current exceeds 10 A/sec. High-sweep- rate measurements (121A/sec) performed on a Bi2212 intrinsic JJ result in the appearance of multiple peaks in the switching current distribution suggesting the realization of ELQ in the d-wave JJ.Comment: 5 pages, 3 figure

    Local impedance on a rough surface of a chiral pp-wave superconductor

    Get PDF
    We develop a self-consistent approach for calculating the local impedance at a rough surface of a chiral pp-wave superconductor. Using the quasiclassical Eilenberger-Larkin-Ovchinnikov formalism, we numerically find the pair potential, pairing functions, and the surface density of states taking into account diffusive electronic scattering at the surface. The obtained solutions are then employed for studying the local complex conductivity and surface impedance in the broad range of microwave frequencies (ranging from subgap to above-gap values). We identify anomalous features of the surface impedance caused by generation of odd-frequency superconductivity at the surface. The results are compared with experimental data for Sr2_2RuO4_4 and provide a microscopic explanation of the phenomenological two-fluid model suggested earlier to explain anomalous features of the microwave response in this material.Comment: 19 pages, 10 figures. Version 2: final version as published in PR

    Theory of two-dimensional macroscopic quantum tunneling in a Josephson junction coupled with an LC circuit

    Full text link
    We investigate classical thermal activation (TA) and macroscopic quantum tunneling (MQT) for a Josephson junction coupled with an LC circuit theoretically. The TA and MQT escape rate are calculated analytically by taking into account the two-dimensional nature of the classical and quantum phase dynamics. We find that the MQT escape rate is largely suppressed by the coupling to the LC circuit. On the other hand, this coupling gives rise to slight reduction of the TA escape rate. These results are relevant for the interpretation of a recent experiment on the MQT and TA phenomena in grain boundary YBCO Josephson junctions.Comment: 4 pages, 1 figure, Proceedings of LT2

    Spin-polarized tunneling of La0.67Sr0.33MnO3/YBa2Cu3O7-d junctions

    Full text link
    The transport properties between ferromagnets and high-Tc superconductors are investigated in La0.67Sr0.33MnO3/YBa2Cu3O7-d (LSMO/YBCO)junctions in the geometry of cross-strip lines. The conductance spectra show zero-bias conductance peaks (ZBCP), reflecting the charge transport in the ab-plane. When an external magnetic field is applied to the junctions, the conductance spectra show two notable features, i.e., an increase of background conductance and an asymmetric ZBCP splitting whose amplitude responds nonlinearly to the applied field. It is shown that the magnetic field response are consistent with a theoretical prediction of tunneling spectroscopy when the presence of a ferromagnetic barrier between a spin-polarized ferromagnet and a d-wave superconductor is assumed.Comment: 10 Pages, 7 EPS figures, Submitted to Phys. Rev.

    Parity-sensitive measurements based on ferromagnet/superconductor tunneling junctions

    Full text link
    A method to identify the parity of unconventional superconductors is proposed based on tunneling spectroscopy. For a model of calculation, we adopt a ferromagnet/superconductor (F/S) junction of which tunneling current is spin polarized. The tunneling conductance spectra are shown to be quite sensitive to the direction of the magnetization axis in the ferromagnet only when the superconductor has odd parity. Therefore, it is possible to distinguish the parity of the superconductor by measuring the tunneling spectroscopy in F/S junctions.Comment: 4 pages, 5 figure. To appear in J. Phys. Soc. Jp

    Effect of zero energy bound states on macroscopic quantum tunneling in high-Tc superconductor junctions

    Full text link
    The macroscopic quantum tunneling (MQT) in the current biased high-Tc superconductor Josephson junctions and the effect of the zero energy bound states (ZES) on the MQT are theoretically investigated. We obtained the analytical formula of the MQT rate and showed that the presence of the ZES at the normal/superconductor interface leads to a strong Ohmic quasiparticle dissipation. Therefore, the MQT rate is noticeably inhibited in compared with the c-axis junctions in which the ZES are completely absent.Comment: 4 pages, 1 figure, comment and reference about recent experiment adde

    Realistic Surface Scattering and Surface Bound State Formation in the High T_c Superconductor YBa_2Cu_3O_{6+x}

    Full text link
    Surface Umklapp scattering of quasiparticles, and surface roughness are shown to play essential roles in the formation of the surface bound states in realistic models for YBa_2Cu_3O_{6+x}. The results account for the shape, the impurity dependence of the height, and for a proposed universal width of the zero bias conductance peak.Comment: 4 pages, 1 figur
    • …
    corecore