260 research outputs found

    Chemical characterization and reactivity of iron chelator-treated amphibole asbestos.

    Get PDF
    Iron in amphibole asbestos is implicated in the pathogenicity of inhaled fibers. Evidence includes the observation that iron chelators can suppress fiber-induced tissue damage. This is believed to occur via the diminished production of fiber-associated reactive oxygen species. The purpose of this study was to explore possible mechanisms for the reduction of fiber toxicity by iron chelator treatments. We studied changes in the amount and the oxidation states of bulk and surface iron in crocidolite and amosite asbestos that were treated with iron-chelating desferrioxamine, ferrozine, sodium ascorbate, and phosphate buffer solutions. The results have been compared with the ability of the fibers to produce free radicals and decompose hydrogen peroxide in a cell-free system in vitro. We found that chelators can affect the amount of iron at the surface of the asbestos fibers and its valence, and that they can modify the chemical reactivity of these surfaces. However, we found no obvious or direct correlations between fiber reactivity and the amount of iron removed, the amount of iron at the fiber surface, or the oxidation state of surface iron. Our results suggest that surface Fe3+ ions may play a role in fiber-related carboxylate radical formation, and that desferrioxamine and phosphate groups detected at treated fiber surfaces may play a role in diminishing and enhancing, respectively, fiber redox activity. It is proposed that iron mobility in the silicate structure may play a larger role in the chemical reactivity of asbestos than previously assumed

    Shuttle Mechanism for Charge Transfer in Coulomb Blockade Nanostructures

    Full text link
    Room-temperature Coulomb blockade of charge transport through composite nanostructures containing organic inter-links has recently been observed. A pronounced charging effect in combination with the softness of the molecular links implies that charge transfer gives rise to a significant deformation of these structures. For a simple model system containing one nanoscale metallic cluster connected by molecular links to two bulk metallic electrodes we show that self-excitation of periodic cluster oscillations in conjunction with sequential processes of cluster charging and decharging appears for a sufficiently large bias voltage. This new `electron shuttle' mechanism of discrete charge transfer gives rise to a current through the nanostructure, which is proportional to the cluster vibration frequency.Comment: 4 pages, 4 figure

    Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development

    Get PDF
    Selective laser sintering (SLS) has been investigated for the production of bioactive implants and tissue scaffolds using composites of high-density polyethylene (HDPE) reinforced with hydroxyapatite (HA) with the aim of achieving the rapid manufacturing of customized implants. Single-layer and multilayer block specimens made of HA-HDPE composites with 30 and 40 vol % HA were sintered successfully using a CO2 laser sintering system. Laser power and scanning speed had a significant effect on the sintering behaviour. The degree of particle fusion and porosity were influenced by the laser processing parameters, hence control can be attained by varying these parameters. Moreover, the SLS processing allowed exposure of HA particles on the surface of the composites and thereby should provide bioactive products. Pores existed in the SLS-fabricated composite parts and at certain processing parameters a significant fraction of the pores were within the optimal sizes for tissue regeneration. The results indicate that the SLS technique has the potential not only to fabricate HA-HDPE composite products but also to produce appropriate features for their application as bioactive implants and tissue scaffolds

    Dynamics of viscous amphiphilic films supported by elastic solid substrates

    Full text link
    The dynamics of amphiphilic films deposited on a solid surface is analyzed for the case when shear oscillations of the solid surface are excited. The two cases of surface- and bulk shear waves are studied with film exposed to gas or to a liquid. By solving the corresponding dispersion equation and the wave equation while maintaining the energy balance we are able to connect the surface density and the shear viscocity of a fluid amphiphilic overlayer with experimentally accessible damping coefficients, phase velocity, dissipation factor and resonant frequency shifts of shear waves.Comment: 19 pages, latex, 3 figures in eps-forma

    In situ

    Full text link

    Influence of gold nanoparticles on collagen fibril morphology quantified using transmission electron microscopy and image analysis

    Get PDF
    BACKGROUND: Development of implantable biosensors for disease detection is challenging because of poor biocompatibility of synthetic materials. A possible solution involves engineering interface materials that promote selfassembly and adhesion of autologous cells on sensor surfaces. Crosslinked type-I collagen is an acceptable material for developing engineered basement membranes. In this study, we used functionalized gold nanoparticles as the crosslinking agent. Functionalized nanoparticles provide sites for crosslinking collagen as well as sites to deliver signaling compounds that direct selfassembly and reduce inflammation. The goal of this study was to obtain a quantitative parameter to objectively determine the presence of crosslinks. METHODS: We analyzed TEM images of collagen fibrils by two methods: Run length analysis and topology analysis after medial axis transform. RESULTS: Run length analysis showed a significant reduction of the interfibril spaces in the presence of nanoparticles (change of 40%, P < 0.05), whereas the fibril thickness remained unchanged. In the topological network, the number of elements, number of branches and number of sides increased significantly in the presence of nanoparticles (P < 0.05). Other parameters, especially the number of loops showed only a minimal and nonsignificant change. We chose a ratiometric parameter of the number of branches normalized by the number of loops to achieve independence from gross fibril density. This parameter is lower by a factor of 2.8 in the presence of nanoparticles (P < 0.05). CONCLUSION: The numerical parameters presented herein allow not only to quantify fibril mesh complexity and crosslinking, but also to help quantitatively compare cell growth and adhesion on collagen matrices of different degree of crosslinking in further studies

    Detection of peptide-based nanoparticles in blood plasma by ELISA

    Get PDF
    Aims: The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods: A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results: The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl meth-acrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions: We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions
    • …
    corecore