157 research outputs found
A practical guide to the evaluation and treatment of male lower urinary tract symptoms in the primary care setting
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75555/1/j.1742-1241.2007.01491.x.pd
A paradox of syntactic priming: why response tendencies show priming for passives, and response latencies show priming for actives
Speakers tend to repeat syntactic structures across sentences, a phenomenon called syntactic priming. Although it has been suggested that repeating syntactic structures should result in speeded responses, previous research has focused on effects in response tendencies. We investigated syntactic priming effects simultaneously in response tendencies and response latencies for active and passive transitive sentences in a picture description task. In Experiment 1, there were priming effects in response tendencies for passives and in response latencies for actives. However, when participants' pre-existing preference for actives was altered in Experiment 2, syntactic priming occurred for both actives and passives in response tendencies as well as in response latencies. This is the first investigation of the effects of structure frequency on both response tendencies and latencies in syntactic priming. We discuss the implications of these data for current theories of syntactic processing
A pre-registered, multi-lab non-replication of the Action-sentence Compatibility Effect (ACE)
The Action-sentence Compatibility Effect (ACE) is a well-known demonstration of the role of motor activity in the comprehension of language. Participants are asked to make sensibility judgments on sentences by producing movements toward the body or away from the body. The ACE is the finding that movements are faster when the direction of the movement (e.g., toward) matches the direction of the action in the to-be-judged sentence (e.g., Art gave you the pen describes action toward you). We report on a pre- registered, multi-lab replication of one version of the ACE. The results show that none of the 18 labs involved in the study observed a reliable ACE, and that the meta-analytic estimate of the size of the ACE was essentially zero
Recommended from our members
Is children's reading “good enough”? Links between online processing and comprehension as children read syntactically ambiguous sentences
We monitored 8- and 10-year-old children’s eye movements as they read sentences containing a temporary syntactic ambiguity to obtain a detailed record of their online processing. Children showed the classic garden-path effect in online processing. Their reading was disrupted following disambiguation, relative to control sentences containing a comma to block the ambiguity, although the disruption occurred somewhat later than would be expected for mature readers. We also asked children questions
to probe their comprehension of the syntactic ambiguity offline. They made more errors following ambiguous sentences than following control sentences, demonstrating that the initial incorrect parse of the garden-path sentence influenced offline comprehension. These findings are consistent with “good enough” processing effects seen in adults. While faster reading times and more regressions were generally associated with better comprehension, spending longer reading the question predicted comprehension success specifically in the ambiguous condition. This suggests that reading the question prompted children to reconstruct the sentence and engage in some form of processing, which in turn
increased the likelihood of comprehension success. Older children were more sensitive to the syntactic function of commas, and, overall, they were faster and more accurate than younger children
A Functional Role for Modality-Specific Perceptual Systems in Conceptual Representations
Theories of embodied cognition suggest that conceptual processing relies on the same neural resources that are utilized for perception and action. Evidence for these perceptual simulations comes from neuroimaging and behavioural research, such as demonstrations of somatotopic motor cortex activations following the presentation of action-related words, or facilitation of grasp responses following presentation of object names. However, the interpretation of such effects has been called into question by suggestions that neural activation in modality-specific sensorimotor regions may be epiphenomenal, and merely the result of spreading activations from “disembodied”, abstracted, symbolic representations. Here, we present two studies that focus on the perceptual modalities of touch and proprioception. We show that in a timed object-comparison task, concurrent tactile or proprioceptive stimulation to the hands facilitates conceptual processing relative to control stimulation. This facilitation occurs only for small, manipulable objects, where tactile and proprioceptive information form part of the multimodal perceptual experience of interacting with such objects, but facilitation is not observed for large, nonmanipulable objects where such perceptual information is uninformative. Importantly, these facilitation effects are independent of motor and action planning, and indicate that modality-specific perceptual information plays a functionally constitutive role in our mental representations of objects, which supports embodied assumptions that concepts are grounded in the same neural systems that govern perception and action
Applauding with Closed Hands: Neural Signature of Action-Sentence Compatibility Effects
BACKGROUND: Behavioral studies have provided evidence for an action-sentence compatibility effect (ACE) that suggests a coupling of motor mechanisms and action-sentence comprehension. When both processes are concurrent, the action sentence primes the actual movement, and simultaneously, the action affects comprehension. The aim of the present study was to investigate brain markers of bidirectional impact of language comprehension and motor processes. METHODOLOGY/PRINCIPAL FINDINGS: Participants listened to sentences describing an action that involved an open hand, a closed hand, or no manual action. Each participant was asked to press a button to indicate his/her understanding of the sentence. Each participant was assigned a hand-shape, either closed or open, which had to be used to activate the button. There were two groups (depending on the assigned hand-shape) and three categories (compatible, incompatible and neutral) defined according to the compatibility between the response and the sentence. ACEs were found in both groups. Brain markers of semantic processing exhibited an N400-like component around the Cz electrode position. This component distinguishes between compatible and incompatible, with a greater negative deflection for incompatible. Motor response elicited a motor potential (MP) and a re-afferent potential (RAP), which are both enhanced in the compatible condition. CONCLUSIONS/SIGNIFICANCE: The present findings provide the first ACE cortical measurements of semantic processing and the motor response. N400-like effects suggest that incompatibility with motor processes interferes in sentence comprehension in a semantic fashion. Modulation of motor potentials (MP and RAP) revealed a multimodal semantic facilitation of the motor response. Both results provide neural evidence of an action-sentence bidirectional relationship. Our results suggest that ACE is not an epiphenomenal post-sentence comprehension process. In contrast, motor-language integration occurring during the verb onset supports a genuine and ongoing brain motor-language interaction
Sensorimotor input as a language generalisation tool: a neurorobotics model for generation and generalisation of noun-verb combinations with sensorimotor inputs
The paper presents a neurorobotics cognitive model explaining the understanding and generalisation of nouns and verbs combinations when a vocal command consisting of a verb-noun sentence is provided to a humanoid robot. The dataset used for training was obtained from object manipulation tasks with a humanoid robot platform; it includes 9 motor actions and 9 objects placing placed in 6 different locations), which enables the robot to learn to handle real-world objects and actions. Based on the multiple time-scale recurrent neural networks, this study demonstrates its generalisation capability using a large data-set, with which the robot was able to generalise semantic representation of novel combinations of noun-verb sentences, and therefore produce the corresponding motor behaviours. This generalisation process is done via the grounding process: different objects are being interacted, and associated, with different motor behaviours, following a learning approach inspired by developmental language acquisition in infants. Further analyses of the learned network dynamics and representations also demonstrate how the generalisation is possible via the exploitation of this functional hierarchical recurrent network
- …