128 research outputs found

    Inflammatory responses to acute exercise during pulmonary rehabilitation in patients with COPD

    Get PDF
    Objective Pulmonary rehabilitation is a cornerstone treatment in the management of chronic obstructive pulmonary disease (COPD). Acute bouts of exercise can lead to short bursts of inflammation in healthy individuals. However, it is unclear how COPD patients respond to acute bouts of exercise. This study assessed inflammatory responses to exercise in COPD patients at the start (phase 1) and end (phase 2) of pulmonary rehabilitation. Methods Blood samples were collected before and after an acute exercise bout at the start (phase 1, n = 40) and end (phase 2, n = 27) of pulmonary rehabilitation. The primary outcome was change in fibrinogen concentrations. Secondary outcomes were changes in CRP concentrations, total/differential leukocyte counts, markers of neutrophil activation (CD11b, CD62L and CD66b), and neutrophil subsets (mature, suppressive, immature, progenitor). Results Acute exercise (phase 1) did not induce significant changes in fibrinogen (p = 0.242) or CRP (p = 0.476). Total leukocyte count [mean difference (MD), 0.5 ± 1.1 (109 L−1); p = 0.004], neutrophil count [MD, 0.4 ± 0.8 (109 L−1); p < 0.001], and immature neutrophils (MD, 0.6 ± 0.8%; p < 0.001) increased post-exercise. Neutrophil activation markers, CD11b (p = 0.470), CD66b (p = 0.334), and CD62L (p = 0.352) were not significantly altered post-exercise. In comparison to the start of pulmonary rehabilitation (phase 2), acute exercise at the end of pulmonary rehabilitation led to a greater fibrinogen response (MD, 84 mg/dL (95% CI − 14, 182); p = 0.045). Conclusion An acute bout of exercise does not appear to induce significant alterations in the concentrations of inflammatory mediators but can increase white blood cell subsets post-exercise. A greater fibrinogen response to acute exercise is seen at the end of pulmonary rehabilitation when compared to the start. Further research is required to understand the clinical context of these acute inflammatory responses to exercise

    Abdominal obesity and metabolic syndrome: exercise as medicine?

    Get PDF
    Background: Metabolic syndrome is defined as a cluster of at least three out of five clinical risk factors: abdominal (visceral) obesity, hypertension, elevated serum triglycerides, low serum high-density lipoprotein (HDL) and insulin resistance. It is estimated to affect over 20% of the global adult population. Abdominal (visceral) obesity is thought to be the predominant risk factor for metabolic syndrome and as predictions estimate that 50% of adults will be classified as obese by 2030 it is likely that metabolic syndrome will be a significant problem for health services and a drain on health economies.Evidence shows that regular and consistent exercise reduces abdominal obesity and results in favourable changes in body composition. It has therefore been suggested that exercise is a medicine in its own right and should be prescribed as such. Purpose of this review: This review provides a summary of the current evidence on the pathophysiology of dysfunctional adipose tissue (adiposopathy). It describes the relationship of adiposopathy to metabolic syndrome and how exercise may mediate these processes, and evaluates current evidence on the clinical efficacy of exercise in the management of abdominal obesity. The review also discusses the type and dose of exercise needed for optimal improvements in health status in relation to the available evidence and considers the difficulty in achieving adherence to exercise programmes. Conclusion: There is moderate evidence supporting the use of programmes of exercise to reverse metabolic syndrome although at present the optimal dose and type of exercise is unknown. The main challenge for health care professionals is how to motivate individuals to participate and adherence to programmes of exercise used prophylactically and as a treatment for metabolic syndrome

    Critical Limb Ischemia

    Get PDF
    Critical limb ischemia (CLI), defined as chronic ischemic rest pain, ulcers, or gangrene attributable to objectively proven arterial occlusive disease, is the most advanced form of peripheral arterial disease. Traditionally, open surgical bypass was the only effective treatment strategy for limb revascularization in this patient population. However, during the past decade, the introduction and evolution of endovascular procedures have significantly increased treatment options. In a certain subset of patients for whom either surgical or endovascular revascularization may not be appropriate, primary amputation remains a third treatment option. Definitive high-level evidence on which to base treatment decisions, with an emphasis on clinical and cost effectiveness, is still lacking. Treatment decisions in CLI are individualized, based on life expectancy, functional status, anatomy of the arterial occlusive disease, and surgical risk. For patients with aortoiliac disease, endovascular therapy has become first-line therapy for all but the most severe patterns of occlusion, and aortofemoral bypass surgery is a highly effective and durable treatment for the latter group. For infrainguinal disease, the available data suggest that surgical bypass with vein is the preferred therapy for CLI patients likely to survive 2 years or more, and for those with long segment occlusions or severe infrapopliteal disease who have an acceptable surgical risk. Endovascular therapy may be preferred in patients with reduced life expectancy, those who lack usable vein for bypass or who are at elevated risk for operation, and those with less severe arterial occlusions. Patients with unreconstructable disease, extensive necrosis involving weight-bearing areas, nonambulatory status, or other severe comorbidities may be considered for primary amputation or palliative measures

    Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise

    Full text link

    Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae

    Get PDF
    Alginate, a copolymer of D-mannuronic acid and L-guluronic acid, is produced by a variety of pseudomonads, including Pseudomonas syringae. Alginate biosynthesis has been most extensively studied in P. aeruginosa, and a number of structural and regulatory genes from this species have been cloned and characterized. In the present study, an alginate-defective (Alg2) mutant of P. syringae pv. syringae FF5 was shown to contain a Tn5 insertion in algL, a gene encoding alginate lyase. A cosmid clone designated pSK2 restored alginate production to the algL mutant and was shown to contain homologs of algD, alg8, alg44, algG, algX (alg60), algL, algF, and algA. The order and arrangement of the structural gene cluster were virtually identical to those previously described for P. aeruginosa. Complementation analyses, however, indicated that the structural gene clusters in P. aeruginosa and P. syringae were not functionally interchangeable when expressed from their native promoters. A region upstream of the algD gene in P. syringae pv. syringae was shown to activate the transcription of a promoterless glucuronidase (uidA) gene and indicated that transcription initiated upstream of algD as described for P. aeruginosa. Transcription of the algD promoter from P. syringae FF5 was significantly higher at 32°C than at 18 or 26°C and was stimulated when copper sulfate or sodium chloride was added to the medium. Alginate gene expression was also stimulated by the addition of the nonionic solute sorbitol, indicating that osmolarity is a signal for algD expression in P. syringae FF5.Peer reviewedPlant Patholog

    Differential profiling of lacrimal cytokines in patients suffering from thyroid-associated orbitopathy.

    Get PDF
    The aim was to investigate the levels of cytokines and soluble IL-6R in the tears of patients with thyroid-associated orbitopathy (TAO) disease. Schirmer's test was adopted to collect tears from TAO patients (N = 20, 17 women, mean age (±SD): 46.0 years (±13.4)) and healthy subjects (N = 18, 10 women, 45.4 years (±18.7)). Lacrimal cytokines and soluble IL-6R (sIL-6R) were measured using a 10-plex panel (Meso Scale Discovery Company) and Invitrogen Human sIL-6R Elisa kit, respectively. Tear levels of IL-10, IL-12p70, IL-13, IL-6 and TNF-α appeared significantly higher in TAO patients than in healthy subjects. Interestingly, IL-10, IL-12p70 and IL-8 levels increased in tears whatever the form of TAO whereas IL-13, IL-6 and TNF-α levels were significantly elevated in inflammatory TAO patients, meaning with a clinical score activity (CAS) ≥ 3, compared to controls. Furthermore, only 3 cytokines were strongly positively correlated with CAS (IL-13 Spearman coeff. r: 0.703, p = 0.0005; IL-6 r: 0.553, p = 0.011; IL-8 r: 0.618, p = 0.004, respectively). Finally, tobacco use disturbed the levels of several cytokines, especially in patient suffering of TAO. The differential profile of lacrimal cytokines could be useful for the diagnosis of TAO patients. Nevertheless, the tobacco use of these patients should be taken into account in the interpretation of the cytokine levels

    Review of solar energetic particle models

    Get PDF
    Solar Energetic Particle (SEP) events are interesting from a scientific perspective as they are the product of a broad set of physical processes from the corona out through the extent of the heliosphere, and provide insight into processes of particle acceleration and transport that are widely applicable in astrophysics. From the operations perspective, SEP events pose a radiation hazard for aviation, electronics in space, and human space exploration, in particular for missions outside of the Earth’s protective magnetosphere including to the Moon and Mars. Thus, it is critical to improve the scientific understanding of SEP events and use this understanding to develop and improve SEP forecasting capabilities to support operations. Many SEP models exist or are in development using a wide variety of approaches and with differing goals. These include computationally intensive physics-based models, fast and light empirical models, machine learning-based models, and mixed-model approaches. The aim of this paper is to summarize all of the SEP models currently developed in the scientific community, including a description of model approach, inputs and outputs, free parameters, and any published validations or comparisons with data.</p

    Effect of barley β-glucan concentration on the microstructural and mechanical behaviour of acid-set sodium caseinate gels

    No full text
    The microstructural and mechanical properties of acid-set mixtures of sodium caseinate (2% w/w)/barley ß-glucans (2-6% w/w) were studied in an effort to evaluate the effect of these polysaccharides on the texture of fermented dairy products. The phase behavior of the blends was investigated using small deformation dynamic oscillation, differential scanning calorimetry, optical microscopy, and polymer blending-laws analysis. The work aimed to assess the topology of the phase separated mixture, the water holding capacity of its polymeric phases, and the thermal stability of the constituent networks. The mixed network properties were dominated by the protein component at low concentrations of ß-glucans (=3% w/w). In the concentrated regime, the system seems to have a bicontinuous topology governed by the mechanical strength and thermal stability of the ß-glucan network structure. Results could assist in optimising the use of sodium caseinate and ß-glucans as functional or as bioactive ingredients in acid-set dairy products

    Modeling counterion partition in composite gels of BSA with gelatin following high pressure treatment

    No full text
    We examine the morphology of hydrogels made of bovine serum albumin and gelatin following high pressure processing at 300 MPa for 15 min at 10 and 80 °C. Emphasis is on the distribution of added calcium counterions between the polymeric phases seen in changes in the structural properties of the composite gel. Protocol includes thermal and HPP treatments, dynamic oscillation rheology, ESEM, and modeling from the synthetic polymer approach to rationalize results. Pressurization at 10 °C produced continuous gelatin networks with dispersed BSA inclusions whereas pressurization at 80 °C yielded an inverse dispersion of BSA as the continuous phase supporting liquid gelatin inclusions. Lewis and Nielsen equations were adapted to predict the counterion distribution between the polymeric phases that profoundly affected the structural properties of the pressurized gels. The concept of counterion partition (p c ) is introduced to the literature to follow the phase behavior of the composites in the presence of added calcium counterions
    corecore