617 research outputs found

    Biodesalination: an emerging technology for targeted removal of Na+and Cl−from seawater by cyanobacteria

    Get PDF
    Although desalination by membrane processes is a possible solution to the problem of freshwater supply, related cost and energy demands prohibit its use on a global scale. Hence, there is an emerging necessity for alternative, energy and cost-efficient methods for water desalination. Cyanobacteria are oxygen-producing, photosynthetic bacteria that actively grow in vast blooms both in fresh and seawater bodies. Moreover, cyanobacteria can grow with minimal nutrient requirements and under natural sunlight. Taking these observations together, a consortium of five British Universities was formed to test the principle of using cyanobacteria as ion exchangers, for the specific removal of Na+ and Cl− from seawater. This project consisted of the isolation and characterisation of candidate strains, with central focus on their potential to be osmotically and ionically adaptable. The selection panel resulted in the identification of two Euryhaline strains, one of freshwater (Synechocystis sp. Strain PCC 6803) and one of marine origin (Synechococcus sp. Strain PCC 7002) (Robert Gordon University, Aberdeen). Other work packages were as follows. Genetic manipulations potentially allowed for the expression of a light-driven, Cl−-selective pump in both strains, therefore, enhancing the bioaccumulation of specific ions within the cell (University of Glasgow). Characterisation of surface properties under different salinities (University of Sheffield), ensured that cell–liquid separation efficiency would be maximised post-treatment, as well as monitoring the secretion of mucopolysaccharides in the medium during cell growth. Work at Newcastle University is focused on the social acceptance of this scenario, together with an assessment of the potential risks through the generation and application of a Hazard Analysis and Critical Control Points plan. Finally, researchers in Imperial College (London) designed the process, from biomass production to water treatment and generation of a model photobioreactor. This multimodal approach has produced promising first results, and further optimisation is expected to result in mass scaling of this process

    Characterization of ocular clinical isolates of Pseudomonas aeruginosa from non-contact lens related keratitis patients from south India

    Get PDF
    P. aeruginosa is the most common Gram-negative organism causing bacterial keratitis. Pseudomonas utilizes various virulence mechanisms to adhere and colonize in the host tissue. In the present study, we examined virulence factors associated with thirty-four clinical P. aeruginosa isolates collected from keratitis patients seeking care at L V Prasad Eye Institute, Hyderabad. The virulence-associated genes in all the isolates were genotyped and characteristics such as antibiotic susceptibility, biofilm formation, swarming motility, pyoverdine production and cell cytotoxicity were analyzed. All the isolates showed the presence of genes related to biofilm formation, alkaline proteases and elastases; however, there was a difference in the presence of genes related to the type III secretion system (T3SS). A higher prevalence of exoU+ genotype was noted in the drug-resistant isolates. All the isolates were capable of forming biofilms and more than 70% of the isolates showed good swarming motility. Pyoverdine production was not associated with the T3SS genotype. In the cytotoxicity assay, the presence of exoS, exoU or both resulted in higher cytotoxicity compared to the absence of both the genes. Overall, our results suggest that the T3SS profile is a good indicator of P. aeruginosa virulence characteristics and the isolates lacking the effector genes may have evolved alternate mechanisms of colonization in the host

    An axiomatic approach to the non-linear theory of generalized functions and consistency of Laplace transforms

    Get PDF
    We offer an axiomatic definition of a differential algebra of generalized functions over an algebraically closed non-Archimedean field. This algebra is of Colombeau type in the sense that it contains a copy of the space of Schwartz distributions. We study the uniqueness of the objects we define and the consistency of our axioms. Next, we identify an inconsistency in the conventional Laplace transform theory. As an application we offer a free of contradictions alternative in the framework of our algebra of generalized functions. The article is aimed at mathematicians, physicists and engineers who are interested in the non-linear theory of generalized functions, but who are not necessarily familiar with the original Colombeau theory. We assume, however, some basic familiarity with the Schwartz theory of distributions.Comment: 23 page

    Corneal infection models : tools to investigate the role of biofilms in bacterial keratitis

    Get PDF
    Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host immune response. Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a highly multifactorial and rapidly expanding field that warrants further research. Progression in this field is dependent on the development of suitable biofilm models that acknowledge the complexity of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on non-living surfaces) currently dominate the literature, but co-culture infection models are beginning to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use a variety of different experimental techniques and animal models. In this review, we will discuss existing corneal infection models and their application in the study of biofilms and host-pathogen interactions at the corneal surface

    An Enigmatic 380 kpc Long Linear Collimated Galactic Tail

    Full text link
    We present an intriguing, serendipitously-detected system consisting of an S0/a galaxy, which we refer to as the "Kite", and a highly-collimated tail of gas and stars that extends over 380 kpc and contains pockets of star formation. In its length, narrowness, and linearity the Kite's tail is an extreme example relative to known tails. The Kite (PGC 1000273) has a companion galaxy, Mrk 0926 (PGC 070409), which together comprise a binary galaxy system in which both galaxies host active galactic nuclei. Despite this systems being previously searched for signs of tidal interactions, the tail had not been discovered prior to our identification as part of the validation process of the SMUDGes survey for low surface brightness galaxies. We confirm the kinematic association between various Hα\alpha knots along the tail, a small galaxy, and the Kite galaxy using optical spectroscopy obtained with the Magellan telescope and measure a velocity gradient along the tail. The Kite shares characteristics common to those formed via ram pressure stripping ("jellyfish" galaxies) and formed via tidal interactions. However, both scenarios face significant challenges that we discuss, leaving open the question of how such an extreme tail formed. We propose that the tail resulted from a three-body interaction from which the lowest-mass galaxy was ejected at high velocity.Comment: Submitted to publication in MNRAS (comments welcome

    Valorization of byproducts of hemp multipurpose crop: Short non-aligned bast fibers as a source of nanocellulose

    Get PDF
    Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5–12 nm, stacks of nanofibrils with widths of 20–200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils

    WALLABY pre-pilot survey: ultra-diffuse galaxies in the Eridanus supergroup

    Get PDF
    We present a pilot study of the atomic neutral hydrogen gas (H I) content of ultra-diffuse galaxy (UDG) candidates. In this paper, we use the pre-pilot Eridanus field data from the Widefield ASKAP L-band Legacy All-sky Blind Survey to search for H I in UDG candidates found in the Systematically Measuring Ultra-diffuse Galaxies survey (SMUDGes). We narrow down to 78 SMUDGes UDG candidates within the maximum radial extents of the Eridanus subgroups for this study. Most SMUDGes UDGs candidates in this study have effective radii smaller than 1.5 kpc and thus fail to meet the defining size threshold. We only find one H I detection, which we classify as a low-surface-brightness dwarf. Six putative UDGs are H I-free. We show the overall distribution of SMUDGes UDG candidates on the size–luminosity relation and compare them with low-mass dwarfs on the atomic gas fraction versus stellar mass scaling relation. There is no correlation between gas-richness and colour indicating that colour is not the sole parameter determining their H I content. The evolutionary paths that drive galaxy morphological changes and UDG formation channels are likely the additional factors to affect the H I content of putative UDGs. The actual numbers of UDGs for the Eridanus and NGC 1332 subgroups are consistent with the predicted abundance of UDGs and the halo virial mass relation, except for the NGC 1407 subgroup, which has a smaller number of UDGs than the predicted number. Different group environments suggest that these putative UDGs are likely formed via the satellite accretion scenario

    Exploring the Structures and Substructures of the Andromeda Satellite Dwarf Galaxies Cassiopeia III, Perseus I, and Lacerta I

    Full text link
    We present results from wide-field imaging of the resolved stellar populations of the dwarf spheroidal galaxies Cassiopeia III (And XXXII) and Perseus I (And XXXIII), two satellites in the outer stellar halo of the Andromeda galaxy (M31). Our WIYN pODI photometry traces the red giant star population in each galaxy to ~2.5-3 half-light radii from the galaxy center. We use the Tip of the Red Giant Branch (TRGB) method to derive distances of (m-M)_0 = 24.62+/-0.12 mag (839 (+48,-450) kpc, or 156 (+16,-13) kpc from M31) for Cas III and 24.47+/-0.13 mag (738 (+48,-45) kpc, or 351 (+17,-16) kpc from M31) for Per I. These values are consistent within the errors with TRGB distances derived from a deeper Hubble Space Telescope study of the galaxies' inner regions. For each galaxy, we derive structural parameters, total magnitude, and central surface brightness. We also place upper limits on the ratio of neutral hydrogen gas mass to optical luminosity, confirming the gas-poor nature of both galaxies. We combine our data set with corresponding data for the M31 satellite galaxy Lacerta I (And XXXI) from earlier work, and search for substructure within the RGB star populations of Cas III, Per I, and Lac I. We find an overdense region on the west side of Lac I at a significance level of 2.5-3-sigma and a low-significance filament extending in the direction of M31. In Cas III, we identify two modestly significant overdensities near the center of the galaxy and another at two half-light radii. Per I shows no evidence for substructure in its RGB star population, which may reflect this galaxy's isolated nature.Comment: 26 pages, 15 figures, 5 tables. Accepted for publication in The Astronomical Journa

    A new integrated care pathway for ambulance attended severe hypoglycaemia in the East of England: The Eastern Academic Health Science Network (EAHSN) model

    Get PDF
    Aims: We developed a new clinical integrated pathway linking a regional Ambulance Trust with a severe hypoglycaemia (SH) prevention team. We present clinical data from the first 2,000 emergency calls taken through this new clinical pathway in the East of England. Methods: SH patients attended by Ambulance crew receive written information on SH avoidance, and are contacted for further education through a new regional SH prevention team. All patients are contacted unless they actively decline. Results: Median age (IQR) was 67 (50 - 80) years, 23.6% of calls were for patients over 80 years old, and patients more than 90 years old were more common than 20 - 25 year olds in this population. Most calls were for patients (84.9%) who were insulin treated, even those over 80 years (75%). One - third of patients attended after a call were unconscious on attendance. 5.6% of patients in this call population had 3 or more ambulance call outs, and they generated 17.6% of all calls. In total, 728 episodes (36.4%) were repeat calls. Insulin related events were clinically more severe than oral hypoglycaemic related events. Patients conveyed to hospitals (13.8%) were significantly older, with poorer recovery in biochemical hypoglycaemia after ambulance crew attendance. Only 19 (1%) opted out of further contact. Patients were contacted by the SH prevention team after a median 3 (0 - 6) days. The most common patient self - reported cause for their SH episode was related to percieved errors in insulin management (31.4%). Conclusions: This new clinical service is simple, acceptable to patients, and a translatable model for prevention of recurrent SH in this largely elderly insulin treated SH population

    Terahertz underdamped vibrational motion governs protein-ligand binding in solution

    Get PDF
    Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein–molecule interactions, and has wider implications for biochemical reactivity and biological function
    • …
    corecore