9 research outputs found
A high-precision rf trap with minimized micromotion for an In+ multiple-ion clock
We present an experiment to characterize our new linear ion trap designed for
the operation of a many-ion optical clock using 115-In^+ as clock ions. For the
characterization of the trap as well as the sympathetic cooling of the clock
ions we use 172-Yb^+. The trap design has been derived from finite element
method (FEM) calculations and a first prototype based on glass-reinforced
thermoset laminates was built. This paper details on the trap manufacturing
process and micromotion measurement. Excess micromotion is measured using
photon-correlation spectroscopy with a resolution of 1.1nm in motional
amplitude, and residual axial rf fields in this trap are compared to FEM
calculations. With this method, we demonstrate a sensitivity to systematic
clock shifts due to excess micromotion of |({\Delta}{\nu}/{\nu})| = 8.5x10^-20.
Based on the measurement of axial rf fields of our trap, we estimate a number
of twelve ions that can be stored per trapping segment and used as an optical
frequency standard with a fractional inaccuracy of \leq 1x10^-18 due to
micromotion.Comment: 19 pages with 14 picture
Momentum-Resolved Bragg Spectroscopy in Optical Lattices
Strongly correlated many-body systems show various exciting phenomena in
condensed matter physics such as high-temperature superconductivity and
colossal magnetoresistance. Recently, strongly correlated phases could also be
studied in ultracold quantum gases possessing analogies to solid-state physics,
but moreover exhibiting new systems such as Fermi-Bose mixtures and magnetic
quantum phases with high spin values. Particularly interesting systems here are
quantum gases in optical lattices with fully tunable lattice and atomic
interaction parameters. While in this context several concepts and ideas have
already been studied theoretically and experimentally, there is still great
demand for new detection techniques to explore these complex phases in detail.
Here we report on measurements of a fully momentum-resolved excitation
spectrum of a quantum gas in an optical lattice by means of Bragg spectroscopy.
The bandstructure is measured with high resolution at several lattice depths.
Interaction effects are identified and systematically studied varying density
and excitation fraction.Comment: 13 pages, 5 figure