460 research outputs found

    Dynamical phase transitions after quenches in non-integrable models

    Full text link
    We investigate the dynamics following sudden quenches across quantum critical points belonging to different universality classes. Specifically, we use matrix product state methods to study the quantum Ising chain in the presence of two additional terms which break integrability. We find that in all models the rate function for the return probability to the initial state becomes a non-analytic function of time in the thermodynamic limit. This so-called `dynamical phase transition' was first observed in a recent work by Heyl, Polkovnikov, and Kehrein [Phys. Rev. Lett. 110, 135704 (2013)] for the exactly-solvable quantum Ising chain, which can be mapped to free fermions. Our results for `interacting theories' indicate that non-analytic dynamics is a generic feature of sudden quenches across quantum critical points. We discuss potential connections to the dynamics of the order parameter

    Luttinger liquid physics from infinite-system DMRG

    Full text link
    We study one-dimensional spinless fermions at zero and finite temperature T using the density matrix renormalization group. We consider nearest as well as next-nearest neighbor interactions; the latter render the system inaccessible by a Bethe ansatz treatment. Using an infinite-system alogrithm we demonstrate the emergence of Luttinger liquid physics at low energies for a variety of static correlation functions as well as for thermodynamic properties. The characteristic power law suppression of the momentum distribution n(k) function at T=0 can be directly observed over several orders of magnitude. At finite temperature, we show that n(k) obeys a scaling relation. The Luttinger liquid parameter and the renormalized Fermi velocity can be extracted from the density response function, the specific heat, and/or the susceptibility without the need to carry out any finite-size analysis. We illustrate that the energy scale below which Luttinger liquid power laws manifest vanishes as the half-filled system is driven into a gapped phase by large interactions

    Approaching Many-Body Localization from Disordered Luttinger Liquids via the Functional Renormalization Group

    Get PDF
    We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled adiabatically to infinite reservoirs. We employ both the functional renormalization group (FRG) as well as matrix product state techniques, which serve as an accurate benchmark for small systems. Using the FRG, we compute the length- and temperature-dependence of the conductance averaged over 10410^4 samples for lattices as large as 10510^{5} sites. We identify regimes in which non-ohmic power law behavior can be observed and demonstrate that the corresponding exponents can be understood by adapting earlier predictions obtained perturbatively for disordered Luttinger liquids. In presence of both disorder and isolated impurities, the conductance has a universal single-parameter scaling form. This lays the groundwork for an application of the functional renormalization group to the realm of many-body localization

    Entanglement scaling of excited states in large one-dimensional many-body localized systems

    Get PDF
    We study the properties of excited states in one-dimensional many-body localized (MBL) systems using a matrix product state algorithm. First, the method is tested for a large disordered non-interacting system, where for comparison we compute a quasi-exact reference solution via a Monte Carlo sampling of the single-particle levels. Thereafter, we present extensive data obtained for large interacting systems of L~100 sites and large bond dimensions chi~1700, which allows us to quantitatively analyze the scaling behavior of the entanglement S in the system. The MBL phase is characterized by a logarithmic growth (L)~log(L) over a large scale separating the regimes where volume and area laws hold. We check the validity of the eigenstate thermalization hypothesis. Our results are consistent with the existence of a mobility edge

    Loschmidt-amplitude wave function spectroscopy and the physics of dynamically driven phase transitions

    No full text
    We introduce the Loschmidt amplitude as a powerful tool to perform spectroscopy of generic many-body wave functions and use it to interrogate the wave function obtained after ramping the transverse field quantum Ising model through its quantum critical point. Previous results are confirmed and a more complete understanding of the population of defects and of the effects of magnon-magnon interaction or finite-size corrections is obtained. The influence of quantum coherence is clarified

    Finite-temperature linear conductance from the Matsubara Green function without analytic continuation to the real axis

    Full text link
    We illustrate how to calculate the finite-temperature linear-response conductance of quantum impurity models from the Matsubara Green function. A continued fraction expansion of the Fermi distribution is employed which was recently introduced by Ozaki [Phys. Rev. B 75, 035123 (2007)] and converges much faster than the usual Matsubara representation. We give a simplified derivation of Ozaki's idea using concepts from many-body condensed matter theory and present results for the rate of convergence. In case that the Green function of some model of interest is only known numerically, interpolating between Matsubara frequencies is much more stable than carrying out an analytic continuation to the real axis. We demonstrate this explicitly by considering an infinite tight-binding chain with a single site impurity as an exactly-solvable test system, showing that it is advantageous to calculate transport properties directly on the imaginary axis. The formalism is applied to the single impurity Anderson model, and the linear conductance at finite temperatures is calculated reliably at small to intermediate Coulomb interactions by virtue of the Matsubara functional renormalization group. Thus, this quantum many-body method combined with the continued fraction expansion of the Fermi function constitutes a promising tool to address more complex quantum dot geometries at finite temperatures.Comment: version accepted by Phys. Rev.
    • …
    corecore