522 research outputs found

    Generalized threshold of longitudinal multi-bunch instability in synchrotrons

    Full text link
    Beam stability is an essential requirement for particle accelerators. Longitudinal coupled-bunch instabilities (CBI) are driven by beam interaction with long-range wakefields induced in the resonant structures with narrow-band impedance. Single-bunch loss of Landau damping (LLD) is mainly determined by short-range wakefields excited at any geometry change of the beam pipe (broadband impedance) and leads to undamped bunch oscillations. Up to now, to define the threshold beam intensity or impedance, these two effects were evaluated separately. We developed an approach to numerically solve the stability problem in a more general case and derived a new analytical threshold. We have shown that LLD can modify the mechanism of multi-bunch instability and reduce the CBI threshold below the LLD threshold. This effect explains the existing observations in the CERN SPS and should be considered for future accelerators, such as HL-LHC, EIC, FCC, and others.Comment: 6 pages, 4 figure

    Parameterized Algorithms for Partitioning Graphs into Highly Connected Clusters

    Get PDF
    Clustering is a well-known and important problem with numerous applications. The graph-based model is one of the typical cluster models. In the graph model generally clusters are defined as cliques. However, such approach might be too restrictive as in some applications, not all objects from the same cluster must be connected. That is why different types of cliques relaxations often considered as clusters. In our work, we consider a problem of partitioning graph into clusters and a problem of isolating cluster of a special type where by cluster we mean highly connected subgraph. Initially, such clusterization was proposed by Hartuv and Shamir. And their HCS clustering algorithm was extensively applied in practice. It was used to cluster cDNA fingerprints, to find complexes in protein-protein interaction data, to group protein sequences hierarchically into superfamily and family clusters, to find families of regulatory RNA structures. The HCS algorithm partitions graph in highly connected subgraphs. However, it is achieved by deletion of not necessarily the minimum number of edges. In our work, we try to minimize the number of edge deletions. We consider problems from the parameterized point of view where the main parameter is a number of allowed edge deletions. The presented algorithms significantly improve previous known running times for the Highly Connected Deletion (improved from cOsleft(81^kright) to cOsleft(3^kright)), Isolated Highly Connected Subgraph (from cOs(4^k) to cOsleft(k^{cOleft(k^{sfrac{2}{3}}right)}right) ), Seeded Highly Connected Edge Deletion (from cOsleft(16^{k^{sfrac{3}{4}}}right) to cOsleft(k^{sqrt{k}}right)) problems. Furthermore, we present a subexponential algorithm for Highly Connected Deletion problem if the number of clusters is bounded. Overall our work contains three subexponential algorithms which is unusual as very recently there were known very few problems admitting subexponential algorithms

    Operation of a semiconductor microcavity under electric excitation

    Get PDF
    We present a microscopic theory for the description of the bias-controlled operation of an exciton-polariton-based heterostructure, in particular, the polariton laser. Combining together the Poisson equations for the scalar electric potential and Fermi quasi-energies of electrons and holes in a semiconductor heterostructure, the Boltzmann equation for the incoherent excitonic reservoir and the Gross-Pitaevskii equation for the exciton-polariton mean field, we simulate the dynamics of the system minimising the number of free parameters and build a theoretical threshold characteristic: number of particles vs applied bias. This approach, which also accounts for the nonlinear (exciton-exciton) interaction, particle lifetime, and which can, in principle, account for any relaxation mechanisms for the carriers of charge inside the heterostructure or polariton loss, allows to completely describe modern experiments on polariton transport and model devices

    Spectroscopic studies of fractal aggregates of silver nanospheres undergoing local restructuring

    Get PDF
    We present an experimental spectroscopic study of large random colloidal aggregates of silver nanoparticles undergoing local restructuring. We argue that such well-known phenomena as strong fluctuation of local electromagnetic fields, appearance of "hot spots" and enhancement of nonlinear optical responses depend on the local structure on the scales of several nanosphere diameters, rather that the large-scale fractal geometry of the sample.Comment: 3.5 pages, submitted to J. Chem. Phy

    Local anisotropy and giant enhancement of local electromagnetic fields in fractal aggregates of metal nanoparticles

    Full text link
    We have shown within the quasistatic approximation that the giant fluctuations of local electromagnetic field in random fractal aggregates of silver nanospheres are strongly correlated with a local anisotropy factor S which is defined in this paper. The latter is a purely geometrical parameter which characterizes the deviation of local environment of a given nanosphere in an aggregate from spherical symmetry. Therefore, it is possible to predict the sites with anomalously large local fields in an aggregate without explicitly solving the electromagnetic problem. We have also demonstrated that the average (over nanospheres) value of S does not depend noticeably on the fractal dimension D, except when D approaches the trivial limit D=3. In this case, as one can expect, the average local environment becomes spherically symmetrical and S approaches zero. This corresponds to the well-known fact that in trivial aggregates fluctuations of local electromagnetic fields are much weaker than in fractal aggregates. Thus, we find that, within the quasistatics, the large-scale geometry does not have a significant impact on local electromagnetic responses in nanoaggregates in a wide range of fractal dimensions. However, this prediction is expected to be not correct in aggregates which are sufficiently large for the intermediate- and radiation-zone interaction of individual nanospheres to become important.Comment: 9 pages 9 figures. No revisions from previous version; only figure layout is change

    Effects of Size Polydispersity on the Extinction Spectra of Colloidal Nanoparticle Aggregates

    Get PDF
    We investigate the effect of particle polydispersity on the optical extinction spectra of colloidal aggregates of spherical metallic (silver) nanoparticles, taking into account the realistic interparticle gaps caused by layers of stabilizing polymer adsorbed on the metal surface (adlayers). The spectra of computer-generated aggregates are computed using two different methods. The coupled-multipole method is used in the quasistatic approximation and the coupled-dipole method beyond the quasistatics. The latter approach is applicable if the interparticle gaps are sufficiently wide relative to the particle radii. Simulations are performed for two different particle size distribution functions (bimodal and Gaussian), varying the number of particles per aggregate, and different distribution functions of the interparticle gap width. The strong influence of the latter factor on the spectra is demonstrated and investigated in detail

    Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Get PDF
    Very few studies of ecosystem-atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2) and energy budgets in a typical bog of the western Siberian middle taiga based on May-August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pinecovered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to CO2 gCm(-2) for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.Peer reviewe
    • …
    corecore