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Abstract
Clustering is a well-known and important problem with numerous applications. The graph-based
model is one of the typical cluster models. In the graph model, clusters are generally defined
as cliques. However, such an approach might be too restrictive as in some applications, not
all objects from the same cluster must be connected. That is why different types of cliques
relaxations often considered as clusters.

In our work, we consider a problem of partitioning graph into clusters and a problem of
isolating cluster of a special type where by cluster we mean highly connected subgraph. Initially,
such clusterization was proposed by Hartuv and Shamir. And their HCS clustering algorithm
was extensively applied in practice. It was used to cluster cDNA fingerprints, to find complexes
in protein-protein interaction data, to group protein sequences hierarchically into superfamily
and family clusters, to find families of regulatory RNA structures. The HCS algorithm partitions
graph in highly connected subgraphs. However, it is achieved by deletion of not necessarily
the minimum number of edges. In our work, we try to minimize the number of edge deletions.
We consider problems from the parameterized point of view where the main parameter is a
number of allowed edge deletions. The presented algorithms significantly improve previous known
running times for the Highly Connected Deletion (improved from O∗

(
81k
)
to O∗

(
3k
)
),

Isolated Highly Connected Subgraph (from O∗(4k) to O∗
(
kO(k

2/3)
)
), Seeded Highly

Connected Edge Deletion (from O∗
(

16k
3/4
)

to O∗
(
k
√

k
)
) problems. Furthermore, we

present a subexponential algorithm for Highly Connected Deletion problem if the number of
clusters is bounded. Overall our work contains three subexponential algorithms which is unusual
as very recently there were known very few problems admitting subexponential algorithms.
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1 Introduction

Clustering is a problem of grouping objects such that objects in one group are more similar to
each other than to objects in other groups. Clustering has numerous applications, including:
machine learning, pattern recognition, image analysis, information retrieval, bioinformatics,
data compression, and computer graphics. Graph-based model is one of the typical cluster
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models. In a graph-based model most commonly cluster is defined as a clique. However,
in many applications, such definition of a cluster is too restrictive [17]. Moreover, clique
model generally leads to computationally hard problems. For example clique problem is
W [1]− hard while s-club problem, with s ≥ 2, is fixed-parameter tractable with respect to
the parameters solution size and s [19]. Because of the two mentioned reasons researchers
consider different clique relaxation models [17, 20]. We mention just some of the possible
relaxations: s-club(the diameter is less than of equal to s), s-plex (the smallest degree
is at least |G| − s), s-defective clique (missing s edges to complete graph), γ-quasi-clique
(|E|/

(|V |
2
)
≥ γ), highly connected graphs (smallest degree bigger than |G|/2) and others.

With different degree of details all these relaxations were studied: s-club[19, 20], s-plex
[14, 1], s-defective clique [21, 7], γ-quasi-clique [18, 16], highly connected graphs [12, 11, 9].

In this work, we study the clustering problem based on highly connected components
model. A graph is highly connected if the edge connectivity of a graph(the minimum number of
edges whose deletion results in a disconnected graph) is bigger than n

2 where n is the number
of vertices in a graph. An equivalent characterization is for each vertex has degree bigger than
n
2 , it was proved in [3]. One of the reasons for this choice is a huge success in applications
of the Highly Connected Subgraphs(HCS) clustering algorithm proposed by Hartuv and
Shamir and the second reason is the lack of research for this model compared with the
standard clique model. HCS algorithm was used [11] to cluster cDNA fingerprints [8], to find
complexes in protein-protein interaction data [10], to group protein sequences hierarchically
into superfamily and family clusters [13], to find families of regulatory RNA structures [15].

Hüffner et al. [11] noted that while Hartuv and Shamir’s algorithm partitions a graph
into highly connected components, it does not delete the minimum number of edges required
for such partitioning. That is why they initiated study of the following problem

Highly Connected Deletion
Instance: Graph G = (V,E).
Task: Find edge subset E′ ⊆ E of the minimum size such that each connected
component of G′ = (V,E \ E′) is highly connected.
For this problem, Hüffner et al. [11] proposed an algorithm which is based on the dynamic

programming technique with the running time bounded by O∗(3n) where n is the number
of vertices. For parameterized version of the problem they proposed an algorithm with the
running time O∗(81k) where k is an upper bound on the size of E′. Additionally, they proved
that the problem admits a kernel with the size O(k1.5). Moreover, they proved conditional
lower bound on the running time of algorithms for Highly Connected Deletion , in
particular, the problem cannot be solved in time 2o(k)·nO(1), 2o(n)·nO(1) , or 2o(m)·nO(1) unless
the exponential-time hypothesis (ETH) fails.

Moreover, in another work Hüffner et al. [12] studied a parameterized complexity of
related problem of finding highly connected components in a graph.

Isolated Highly Connected Subgraph
Instance: Graph G = (V,E), integer k, integer s.
Task: Is there a set of vertices S such that |S| = s, G[S] is highly connected graph
and |E(S, V \ S)| ≤ k.

Seeded Highly Connected Edge Deletion
Instance: Graph G = (V,E), subset S ⊆ V , integer a, integer k.
Task: Is there a subset of edges E′ ⊆ E of size at most k such that G−E′ contains
only isolated vertices and one highly connected component C with S ⊆ V (C) and
|V (C)| = |S|+ a.

They proposed algorithms with the running time O∗(4k) and O∗(16k3/4) respectively.
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Table 1 Results.

Problem Previous result Our result
Highly Connected Deletion (exact) O∗ (3n) O∗ (2n)

Highly Connected Deletion (parameterized) O∗
(
81k
)

O∗
(
3k
)

p-Highly Connected Deletion - O∗
(

2O
(√

pk
))

Isolated Highly Connected Subgraph O∗(4k) O∗
(

kO(k
2/3)
)

Seeded Highly Connected Edge Deletion O∗
(

16k
3/4
)

O∗
(

k
√

k
)

Our results. We propose algorithms which significantly improve previous upper bounds.
Running times of algorithms may be found in a Table 1. We would like to note that three
of the algorithms have subexponential running time which is not common. Until very
recently there were very few problems admitting subexponential running time. To our
mind in algorithm for Isolated Highly Connected Subgraph problem we have an
unusual branching procedure as in one branch parameter is not decreasing. However, the
value of subsequent decrementation of parameter in this branch is increasing which leads to
subexponential running time. We find the fact interesting as we have not met such behavior
of branching procedures before. Presented analysis for this case might be useful in further
development of subexponential algorithms.

2 Algorithms for partitioning

2.1 Highly Connected Deletion
In this section we present an algorithm for Highly Connected Deletion problem. Our
algorithm is based on the fast subset convolution. Let f, g : 2X → {0, 1, . . .M} be two
functions and |X| = n. Björklund et al. in [2] proved that function f ∗ g : 2X → {0, . . . , 2M},
where (f ∗ g)(S) = min

T⊆S
(f(T ) + g(S \ T )), can be computed on all subsets S ⊆ X in time

O(2npoly(n,M)).

I Theorem 1. There is a O∗(2n) time algorithm for Highly Connected Deletion
problem.

Proof. Let define function f in the following way

f(S) =
{
|E(S, V \ S)| if G[S] is highly connected
∞ otherwise

Consider function f∗k(V ) = f ∗ · · · ∗ f︸ ︷︷ ︸
k times

.

Note that f∗k(V ) = min
S1t···tSk=V

(f(S1) + · · ·+ f(Sk)). Hence, to solve the problem it is

enough to find minimum of f∗k(V ) over all 1 ≤ k ≤ n. Note that if f∗k(V ) =∞ then it is
not possible to partition V into k highly connected components. So if the minimum value of
f∗k(V ) is ∞ then there is no partitioning of G into highly connected components.

Our algorithm contains the following steps.
1. Compute f , i.e. compute value f(S) for all S ⊂ V . It takes O(2n(n+m)) time.
2. Using Björklund et al.[2] algorithm iteratively compute f∗i for all 1 ≤ i ≤ n.
3. Find k such that f∗k(V ) is minimal.

MFCS 2017
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After we perform above steps we will know values of functions f∗i on each subset S ⊆ X.
Let S1 t S2 t · · · t Sk be an optimum partitioning of X into highly connected components.
Knowing values of function f∗k−1 and f it is straightforward to restore Sk in time 2n.
Moreover, knowing f∗k−1, Sk we can find value of Sk−1. Proceeding this way we obtain the
optimum partitioning. As k ≤ n, we spent at most O(n2n) time to find all Si.

It is left to show how to compute all f∗i within O∗(2n) time. The only obstacle why
we cannot straightforwardly apply Björklund’s algorithm is that f sometimes takes infinite
value. It is easy to fix the problem by replacing infinity value with 2m+ 1. We know that
each convolution require O(2npoly(n,M)) time and above we show that we can put M to be
equal 2m+ 1. As we need to perform n subset convolutions. So, the running time of second
step is O∗(2n). Hence, the overall running time is O∗(2n). J

Now we consider parameterized version of Highly Connected Deletion problem (one
is asked whether it is possible to delete at most k edges and get a vertex disjoint union of
highly connected subgraphs).

I Theorem 2. There is an algorithm for Highly Connected Deletion problem with
running time O∗(3k).

Proof. Before we proceed with the proof of the theorem we list several simplification rules
and lemmas proved by Hüffner et al. in [11].

I Rule 3. If G contains a connected component C which is highly connected then replace
original instance with instance (G[V \ V (C)], k).

I Lemma 4. Let G be a highly connected graph and u, v ∈ V (G) be two different vertices
from V (G). If uv ∈ E, then |N(u) ∩N(v)| ≥ 1. If uv 6∈ E then |N(u) ∩N(v)| ≥ 3.

I Rule 5. If u, v ∈ E and N(u) ∩N(v) = ∅ then delete edge uv and decrease parameter k
by 1. The obtained instance is ((V,E \ {uv}), k − 1).

I Definition 6. Let us call vertices u, v k-connected if any cut separating these two vertices
has size bigger than k.

I Rule 7. Let S be an inclusion maximal set of pairwise k-connected vertices and |S| > 2k.
If the induced graph G[S] is not highly connected then our instance is a NO-instance(it is
not possible to delete k edges and obtain vertex disjoint union of higly connected subgraphs).
Otherwise, we replace original instance with an instance (G[V \ S], k − |E(S, V \ S)|).

I Lemma 8. If G is highly connected then diam(G) ≤ 2.

It was shown in [11] that all of the above rules are applicable in polynomial time.
Without loss of generality assume that G is connected. Otherwise, we consider several

independent problems. One problem for each connected component. For each connected
component we find minimum number of edges that we have to delete in order to partition
this component into highly connected subgraphs. Note that in order to find a minimum
number for each subproblem we simply consider all possible values of parameter starting
from 0 to k.

From Lemma 8 follows that if dist(u, v) (distance between two vertices u, v) is bigger
than 2 then in optimal partitioning u and v belong to different connected components. Hence,
if dist(u, v) ≥ 3 then at least one edge from the shortest path between u and v belongs to E′.
If diam(G) > 2 then it is possible to find two vertices u, v such that dist(u, v) = 3. So given
the shortest path u, x, y, v we can branch to three instances (G \ ux, k − 1), (G \ xy, k − 1),
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(G \ yv, k − 1). We apply such branching exhaustively. Finally, we obtain instance with a
graph G′ of diameter 2.

Now, for our algorithm it is enough to consider a case when graph G has the following
properties: (i) diam(G) ≤ 2; (ii) there are no subsets S of pairwise k-connected vertices with
|S| > 2k; (iii) G is not highly connected.

From now on we assume that G has above mentioned properties. Suppose C1tC2t· · ·tC`

is an optimum partitioning of G into highly connected graphs and E′ is a subset of removed
edges. We call vertex affected if it is incident with an edge from E′. Otherwise, it is unaffected.
Denote by U the set of all unaffected vertices and by T the set of all affected vertices. By
C(v) we denote a cluster Ci for which v ∈ Ci. Note that for affected vertex u there is vertex
v such that uv ∈ E(G) and v /∈ C(u).

I Lemma 9. Let G be a graph with diameter 2 then for any optimum partitioning C1 tC2 t
· · · t C` of G into highly connected graphs there is an i such that U is contained in Ci.

Proof. Assume that there are two unaffected vertices u, v ∈ U and C(v) 6= C(u). Note that
any path between u and v must contain an edge from E′ and two different edges contained
in C(u), C(v) and incident to u and v correspondingly. So, the shortest path between u and
v contains at least three edges which contradict our assumption that diam(G) ≤ 2. Hence,
there is an i such that U ⊆ Ci. J

I Lemma 10. Let G be a graph with diameter 2 and optimum partitioning C1 tC2 t · · · tC`

into highly connected graphs. If U is not empty then |E′| ≥ n− |Ci| where U ⊆ Ci.

Proof. Consider an arbitrary unaffected vertex u. For any v ∈ V we have dist(v, u) ≤ 2.
Hence, for any v /∈ C(u) there is an edge connecting component C(u) with vertex v as
otherwise we have dist(u, v) > 2. So we have |E′| ≥ n− |C(u)|. J

For any YES-instance we have k ≥ |E′| ≥ |T |2 , n = |T |+ |U |, and |U | ≤ 2k.The inequality
|U | ≤ 2k follows from the simplification Rule 7 and Lemma 9. As otherwise highly connected
component which contains U is bigger than 2k and hence simplification Rule 7 can be applied
which leads to contradiction. So, it means that n = |T |+ |U | ≤ 4k.

Below we present two algorithms. One of these algorithms solves the problem under
assumption that optimum partitioning contains at least one unaffected vertex, the other one
solves the problem under assumption that all vertices are affected in optimum partitioning.
In order to estimate running time of the algorithms we use the following lemma.

I Lemma 11. [5] For any non-negative integer a, b we have
(

a+b
b

)
≤ 22

√
ab.

At first, consider a case when there is at least one unaffected vertex in optimum parti-
tioning.

I Lemma 12. Let G be a connected graph with diameter at most 2. If there is an optimum
partitioning C1 t C2 t · · · t C` of G into highly connected graphs such that set of unaffected
vertices is not empty then Highly Connected Deletion can be solved in O∗(2 3k

2 ) time.

Proof. Let us fix some unaffected vertex u (in algorithm we simply brute-force all n possible
values for unaffected vertex u). By Lemma 10 highly connected graph C(u) contains at least
n−k vertices. As u is unaffected thenN(u) ⊂ C(u) and |N(u)| > |C(u)|

2 . Consider set V \N [u].
And partition it into two subsets W1,2 tW≥3, where W1,2 = {v|1 ≤ |N(u)∩N(v)| ≤ 2}, and
W≥3 = {v|3 ≤ |N(u) ∩ N(v)|}. From lemma 4 follows that W1,2 ∩ C(u) = ∅. Note that
knowing set Cpart = C(u) ∩W≥3 we can find set C(u) = Cpart ∪N [u] and after this simply
run algorithm from Theorem 1 on set V (G) \ C(u). We implement this approach.

MFCS 2017
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We know that N [u] t Cpart = C(u) and C(u) ≤ 2k. As |Cpart| ≤ C(u)
2 it follows that

|Cpart| ≤ k. Brute-force over all possible values of s = |Cpart|. Having fixed value of s we
enumerate all subsets of W≥3 of size s. All such subsets are potential candidates for a Cpart

role. It is possible to enumerate candidates with polynomial delay i.e. in O∗(
( |W≥3|
|Cpart|

)
) time.

For each listed candidate we run algorithm from Theorem 1. Let R = W≥3 \ Cpart.
Hence, the overall running time for a fixed |Cpart| is bounded by O∗(2|R∪W1,2|)

( |W≥3|
|Cpart|

)
=

O∗(2|R∪W1,2|)
(|Cpart|+|R|
|Cpart|

)
. By Lemma 11 we have:

O∗(2|R∪W1,2|)
(|Cpart|+|R|
|Cpart|

)
= O∗(22

√
|Cpart||R|+|R|+|W1,2|).

We know that |Cpart| ≤ k, 3|R| + |W1,2| ≤ k, hence O∗(22
√
|Cpart||R|+|R|+|W1,2|) ≤

O∗(22
√

k|R|−2|R|+k). The function g(t) = 2
√
kt− 2t+ k attains it maximum when t = k

4 . So
the running time in the worst case is O∗(21.5k). J

It is left to construct an algorithm for a case in which all vertices are affected in optimum
partitioning. First of all note that if n ≤ 1.57k ≤ k log2 3 we can simply run Algorithm 1
and it finds an answer in O∗(2n) = O∗(3k) time. Taking into account that all vertices are
affected we have that n ≤ 2k. So we may assume that 1.57k ≤ n ≤ 2k.

I Lemma 13. Let G be a graph with diameter 2 and |V (G)| ≥ 1.57k. Moreover, (G, k)
Highly Connected Deletion problem admits correct partitioning into highly connected
components C1 t C2 t · · · t C` such that all vertices are affected in this partitioning. Then
there are two highly connected components Ci, Cj such that |Ci|+ |Cj | ≥ n− k.

Proof. Let E′ be set of deleted edges for partitioning C1 t C2 t · · · t C`. From n ≥ 1.57k
follows that in graph (V (G), E′) there is a vertex s of degree 1, let st ∈ E′ be the edge. We
prove that C(s), C(t) are desired highly connected components. As diam(G) ≤ 2 then for
any vertex v ∈ V (G) \ C(s) \ C(t) there is path of length at most 2 from s to v. Hence, any
vertex v ∈ V (G) \C(s) \C(t) should be connected with C(s)∪C(t) in graph G. As |E′| ≤ k
then V (G) \ (C(s) ∪ C(t)) ≤ k. So |C(s)|+ |C(t)| ≥ n− k. J

Now we brute-force all vertices as candidates for a role of vertex s, i.e. vertex of degree 1
in solution E′. Consider two possibilities either |C(s)| > 2n− 3.14k or |C(s)| ≤ 2n− 3.14k.

Consider the first case, if |C(s)| > 2n− 3.14k, then we find solution in O∗(2n− |C(s)|
2 ) =

O∗(3k) time. In order to do this we consider degG(s) cases. Each case correspond to a
different edge st incident with s. Such an edge we treat as the only edge incident with s
from E′. Having fixed an edge st being from E′ we know that all other edges incident with s
belong to E(C(s)). Denote the set of endpoints of these edges to be U . So we can identify
at least |C(s)|

2 vertices from C(s). Now we can apply the same technique as in proof of
Theorem 1.

We define three functions f, g, h over subsets of W = V \ U .
f(S) = |E(S,W \ S)| if G[S] is highly connected, otherwise it is equal to ∞.
h(S) = min

i
(f∗i(S)).

g(S) = 2|E(W \ S,U)|+ |E(S,W \ S)| if G[U ∪ S] is highly connected otherwise it is ∞.

Let us provide some intuition standing behind the formulas. Value f(S) indicate number
of vertices that we have to delete in order to separate highly connected graph G[S]. h(S)
is a number of edges needed to be deleted in order to separate G[S] into highly connected
components. g(S) in some sense is a number of edge deletion needed to create a highly
connected component U ∪ S which contains vertex s. We show that to solve the problem
it is enough to compute (g ∗ h)(W ). In similar way to Theorem 1 (g ∗ h)(W )/2 equals to a
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number of optimum edge deletions. Note that all deleted edges not having endpoints in C(s)
will be calculated two times, one for each of its incident highly connected component, see
definition of function h. Each edge of E′ having an endpoint in U is counted twice in first
term of function g. And finally each edge from E′ having endpoint in C(s) \ U is counted
twice, once in second term of the formula of g, and once in the formula of h. So (g ∗h)(W )/2
is required number of edge deletions.

Second case, if |C(s)| ≤ 2n− 3.14k then n− k ≤ |C(s)|+ |C(t)| ≤ 2n− 3.14k + |C(t)|.
It follows that |C(t)|+ 2n− 3.14k ≥ n− k. Hence, C(t) ≥ 2.14k − n ≥ 0.14k. It means

that in C(t) there is a vertex of degree at most 7 in graph (V (G), E′). We brute-force all
candidates for such vertex and for such edges from E′. Having fixed the candidates, vertex
t′ and at most seven edges, we identify more than a half vertices from C(t′) = C(t) in the
following way. All edges incident to t′ except just fixed set of candidates belong to C(t).
Denote the endpoints of these edges as Ut. In the same way, all edges incident with s except
st belong to C(s). Denote by Us endpoints of edges incident with s except the edge st ∈ E′.
Let U = Us ∪ Ut. Below we show how to solve obtained problem in O∗

(
2n− 1

2 (|C(s)|+|C(t)|)
)

time. As in previous case we apply idea similar to algorithm from Theorem 1. Now we
present only functions which convolution give an answer. As the further details are identical
to Theorem 1.

Our functions are defined over subsets of a set W = V \ U .
f(S) = |E(S,W \ S)| if G[S] is highly connected, otherwise ∞.
h(S) = min

i

(
f∗i(S)

)
.

gs(S) = 2|E(S,Ut)|+ |E(S,W \ S)| if G[S ∪ Us] is highly connected, otherwise ∞.
gt(S) = 2|E(S,Us)|+ |E(S,W \ S)| if G[S ∪ Ut] is highly connected, otherwise ∞.

The only difference from previous case is that we constructed two functions gs, gt instead
of just one function g as now we know two halves of two guessed highly connected components.
Minimum number of edge deletions in YES-instance separating clusters C(s), C(t) (Us ⊆
C(s), Ut ⊆ C(t)) is (h ∗ gs ∗ gt)(W )/2. So in this case we need O∗(2|W |) running time which
is O∗

(
2n− (n−k)

2

)
= O∗

(
2 3k

2

)
. J

2.2 p-Highly Connected Deletion

p-Highly Connected Deletion
Instance: Graph G = (V,E), integer numbers p and k.
Task: Is there a subset of edges E′ ⊂ E of size at most k such that G−E′ contains at
most p connected components and each component is highly connected?
Our algorithm for p-Highly Connected Deletion is insipired by algorithm for p-

Cluster Editing by Fomin et al. [5].
First of all, we prove an upper bound on the number of small cuts in highly connected

graph.

I Lemma 14. Let G = (V,E) be highly connected graph, X = arg min
S⊂V

|V |
4 ≤|S|≤

3|V |
4

|E(S, V \S)|, and

Y = V \X, then
(i) If |E(X,Y )| ≥ |V |

2

100 then for any partition of V = A tB we have |E(A,B)| ≥ |A|·|B|100 .

(ii) If |E(X,Y )| < |V |2
100 then for any partition of V = A tB we have:

|E(A ∩X,B ∩X)| ≥ |X∩A|·|X∩B|
100 , |E(A ∩ Y,B ∩ Y )| ≥ |Y ∩A|·|Y ∩B|

100 ,

|E(A,B)| ≥ |X∩A|·|X∩B|
100 + |Y ∩A|·|Y ∩B|

100 .

MFCS 2017
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Proof. i) Let V = A tB. Without loss of generality |A| < |B|.
If |V |4 ≤ |A| then |E(X,Y )| ≤ |E(A,B)|. Hence, |E(A,B)| ≥ |E(X,Y )| ≥ |V |

2

100 ≥
|A|·|B|

100 .

If |A| < |V |
4 then |E(A,B)| ≥

∑
v∈A

(deg(v) − |A|). As deg(v) > |V |
2 for all v ∈ V (G), we

have |E(A,B)| ≥ |A|
(
|V |
2 − |A|

)
≥ |A|·|V |4 ≥ |A|·|B|4 ≥ |A|·|B|100 .

ii) Note that |E(A,B)| ≥ |E(A∩X,B∩X)|+ |E(A∩Y,B∩Y )| . So it is enough to prove
that |E(A ∩X,B ∩X)| ≥ |A∩X|·|B∩X|

50 , as the proof of |E(A ∩ Y,B ∩ Y )| ≥ |A∩Y |·|B∩Y |
50 is

analogous. The sum of these two inequalities gives the proof of the theorem.
Without loss of generality |B ∩X| ≤ |A∩X|. Hence, |V |8 ≤ |A∩X| and |B ∩X| ≤

3|V |
8 .

Consider two cases: |A ∩X| ≥ |V |4 and |A ∩X| < |V |
4 .

Consider case when |A∩X| ≥ |V |4 . At first we prove |E(A∩X,B ∩X)| ≥ |E(B ∩X,Y )|.
It is known that:

|E(A ∩X,V \ (A ∩X))| = |E(X,Y )| − |E(B ∩X,Y )|+ |E(A ∩X,B ∩X)| , (1)

|A∩X| ≥ |V |4 , and |V \ (A ∩X) | ≥ |Y | ≥ |V |4 , it means |E(A∩X,V \ (A ∩X))| ≥ |E(X,Y )|.
The last inequality and (1) imply |E(A ∩ X,B ∩ X)| ≥ |E(B ∩ X,Y )|. It follows that
2|E(A ∩X,B ∩X)| ≥ |E(B ∩X,A ∩X)|+ |E(B ∩X,Y )| = |E(B ∩X,V \ (B ∩X) |.

As 3|V |
8 ≥ |B ∩ X| and |E(B ∩ X,V \ (B ∩X))| ≥ |B ∩ X|

(
|V |
2 − |B ∩X|

)
we have

|E(B ∩X,V \ (B ∩X))| ≥ |B∩X|·|V |
8 . Hence, |E(A ∩X,B ∩X)| ≥ |B∩X|·|V |

16 ≥ |B∩X|·|V |
100 .

It is left to consider case |A ∩ X| < |V |
4 . Note that |E(A ∩ X,B ∩ X)| = |E(A ∩

X,V \ (A ∩ X))| − |E(A ∩ X,Y )|. As |V |4 > |A ∩ X| we have |E(A ∩ X,V \ (A ∩ X))| ≥
|A∩X|

(
|V |
2 − |A ∩X|

)
≥ |V |8 ·

|V |
4 ≥

|V |2
32 . We know that |E(A∩X,Y )| ≤ |E(X,Y )| ≤ |V |

2

100 ,

hence |E(A ∩X,B ∩X) ≥ |V |
2

32 −
|V |2
100 > |V |2

50 ≥
|A∩X|·|B∩X|

100 . J

I Definition 15. A partition of V = V1 t V2 is called a k-cut of G if |E(V1, V2)| ≤ k .

The following lemma limits number of k-cuts in a disjoint union of highly connected
graphs.

I Lemma 16. If G = (V,E) is a union of p disjoint highly connected components and p ≤ k
then the number of k-cuts in G is bounded by 2O

(√
pk
)
.

Proof. Let G be a disjoint union of highly connected components C1, . . . , Cp. For each
Ci we consider sets Xi, Yi where E(Xi, Yi) is a minimum cut of Ci and Ci = Xi t Yi. We
construct a new partition C ′1, . . . , C ′q of V (G). The new partition is obtained from partition
C1 t . . . t Cp in the following way: if |E(Xi, Yi)| < |C2

i |/100 then we split Ci into two sets
Xi, Yi otherwise we take Ci without splitting. Note that p ≤ q ≤ 2p as we either split Ci

into to parts or leave it as is.
We bound number of k-cuts of graph G in two steps. In first step we bound number of

cuts V1, V2 such that |V1 ∩ C ′i| = xi and |V2 ∩ C ′i| = yi where xi, yi are some fixed integers.
In second step we bound number of tuples (x1, . . . , xq, y1, . . . , yq) for which there is at least
one k-cut V1, V2 satisfying conditions |V1 ∩ C ′i| = xi, |V2 ∩ C ′i| = yi.

If xi, yi are fixed and xi + yi = |C ′i| the number of partitions of C ′i is equal to
(

xi+yi

xi

)
.

Note that by Lemma 11 we have
(

xi+yi

xi

)
≤ 2
√

xiyi . Observe that there are at least xiyi

100 edges

between V1∩C ′i and V2∩C ′i by Lemma 14. So if V1tV2 is partition of V then
q∑

i=1
xiyi ≤ 100k.
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Applying Cauchy–Schwarz inequality we infer that
q∑

i=1

√
xiyi ≤

√
q ·
√∑q

i=1 xiyi ≤
√

200pk.

Therefore, the number of considered cuts is at most
q∏

i=1

(
xi+yi

xi

)
≤ 22

∑q

i=1
√

xiyi ≤ 2
√

800pk.

Now we show bound for a second step i.e. number of possible tuples (x1, . . . , xq, y1, . . . , yq)

generating at least one k-cut. Note that min{xi, yi} ≤
√
xiyi. Hence,

q∑
i=1

min(xi, yi) ≤
√

100qk . Tuple (x1, . . . , xq, y1, . . . , yq) can be generated in the following way: at first we
choose which value is smaller xi or yi. Then we express

√
b100qkc as a sum of q + 1

non-negative numbers: min{xi, yi} for 1 ≤ i ≤ q and the rest
√
b100qkc −

q∑
i=1

min(xi, yi).

The number of choices in the first step of generation is equal to 2q ≤ 2
√

2qk, and number of
ways to expreess

√
100qk as a sum of q+1 number is at most

(√100qk+q+1
q

)
≤ 2
√

100qk+q+1 ≤

2
√

100qk+
√

2qk+1. Therefore, the total number of partitions is bounded by 2c
√

pk for some
constant c. J

The last ingredient for our algorithm is the following lemma proved by Fomin et al.[5]

I Lemma 17. [5] All cuts (V1, V2) such that |E(V1, V2)| ≤ k of a graph G can be enumerated
with polynomial time delay.

Now we are ready to present a final theorem.

I Theorem 18. There is a O∗(2O(
√

pk)) time algorithm for p-Highly Connected Dele-
tion problem.

Proof. First of all we solve the problem in case of connected graph. Denote by N set of all
k-cuts in graph G. All elements of set N can be enumerated with a polynomial time delay.
If G is a union of p clusters plus some edges then the size of N is bounded by 2c

√
pk by

Lemma 16 (as additional edges only decrease number of k-cuts). Thus, we enumerate N in
time O∗(2O(

√
pk)). If we exceed the bound 2c

√
pk given by Lemma 16 we know that we can

terminate our algorithm and return answer NO. So we may assume that we enumerate the
whole N and it contains at most 2c

√
pk elements.

We construct a directed graph D, whose vertices are elements of a set N ×{0, 1, . . . , p}×
{0, 1, . . . , k}, note that |V (D)| = 2O(

√
pk). We add arcs going from ((V1, V2), j, l) to

((V ′1 , V ′2), j + 1, l′), where V1 ⊂ V ′1 , G[V ′1 \ V1] is highly connected graph, j ∈ {0, 1, . . . , p− 1},
and l′ = l+ |E(V1, V

′
1 \V1)|. The arcs can be constructed in 2O(

√
pk) time. We claim that the

answer for an instance (G, p, k) is equivalent to existence of path from a vertex ((V,∅), 0, 0)
to a vertex ((∅, V ), p′, k′) for some p′ ≤ p, k′ ≤ k.

In one direction, if there is a path from ((∅, V ), 0, 0) to ((V,∅), p′, k′) for some k′ ≤ k and
p′ ≤ p, then the consecutive sets V ′1 \ V1 along the path form highly connected components.
Moreover, number of deleted edges from G is equal to last coordinate which is smaller than
k.

Let us prove the opposite direction. Let assume that we can delete at most k edges and
get a graph with highly connected components C1, . . . , Cp. Let us denote Ti = ∪j<iV (Ci),
li+1 = li + |E(Ti+1 \ Ti, Ti)| then the vertices ((Ti, V \ Ti), i− 1, li) constitute desired path
in graph D.

Reachability in a graph can be tested in a linear time with respect to the number of
vertices and arcs. To concude the algorithm we simply test the reachability in the graph D.

MFCS 2017
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It is left co consider a case when G is not connected. Let assume that G consist of q
connected components C1, . . . , Cq then for each connected component Ci we find all p′ ≤ p
and k′ ≤ k such that (Ci, p

′, k′) is YES-instance. After this we construct auxiliary directed
graph Q with a set of vertices {0, . . . , q} × {0, . . . , p} × {0, . . . , k}. We add arcs going from
(i, a, b) to (i + 1, a + p′, b + k′) if (Ci, p

′, k′) is a YES-instance. Using similar arguments as
before it could be shown that reachability of vertex (q, p′, k′) from vertex (0, 0, 0) is equivalent
to possibility delete k′ edges and get p′ highly connected components. J

3 Algorithms for finding a subgraph

3.1 Seeded Highly Connected Edge Deletion

Seeded Highly Connected Edge Deletion
Instance: Graph G = (V,E), subset S ⊆ V and integer numbers a and k.
Task: Is there a subset of edges E′ ⊆ E of size at most k such that G−E′ contains
only isolated vertices and one highly connected component C with S ⊆ V (C) and
|V (C)| = |S|+ a.

Hüffner et al. [12] constructed an algorithm with running time O(16k0.75 + k2nm) for
Seeded Highly Connected Edge Deletion problem. We improve the result to
O∗
(

2O(
√

k log k)
)
time algorithm.

I Theorem 19. There is O∗(2O(
√

k log k)) time algorithm for Seeded Highly Connected
Edge Deletion problem.

3.2 Isolated Highly Connected Subgraph

Isolated Highly Connected Subgraph
Instance: Graph G = (V,E), integer k, integer s.
Task: Is there a set of vertices S such that |S| = s, G[S] is highly connected graph
and |E(S, V \ S)| ≤ k.

Hüffner et al. [12] proposed O∗(4k) algorithm for Isolated Highly Connected Sub-
graph problem, in this work we construct subexponential algorithm for the same problem
with running time O∗(kO(k2/3)).

In order to solve Isolated Highly Connected Subgraph problem Hüffner et al.
in [12] constructed algorithm for a more general problem:
f -Isolated Highly Connected Subgraph
Instance: Graph G = (V,E), integer k, integer s, function f : V → N.
Task: Is there a set of vertices S such that |S| = s, G[S] is highly connected and
|E(S, V \ S)|+

∑
v∈S

f(v) ≤ k.

Our algorithm uses reduction rules proposed in [12]. Here, we state the reduction rules
without proof, as the proofs can be found in [12].

I Rule 20. If G contains connected component C of size smaller than s then delete C i.e.
solve instance (G \ C, f, k).

I Rule 21. Let G contains connected component C = (V ′, E′) with minimal cut bigger
than k. If C is highly connected graph, |V ′| = s and

∑
s∈V ′

f(s) ≤ k then output a trivial
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YES-instance otherwise remove C, i.e. consider instance (G \ C, f, k) of f -Isolated Highly
Connected Subgraph problem.

I Rule 22. Let G contains connected component C with minimal cut (A,B) of size at most s
2 .

We define function f ′ in the following way: for each vertex v ∈ A f ′(v) := f(v) + |N(v) ∩B|
and for each v ∈ B we let f ′(v) := f(v) + |N(v) ∩ A|. Replace original instance with an
instance (G \ E(A,B), f ′, k).

I Lemma 23. Rules 20, 21, 22 can be exhaustively applied in time O((sn+ k)m). If rules
20, 21, 22 are not applicable then k > s

2 .

We also use following Fomin and Villanger’s result.

I Proposition 24. [6] For each vertex v in graph G and integers b, f ≥ 0 number of
connected induced subgraphs B ⊆ V (G) satisfying the following properties v ∈ B, |B| =
b + 1, |N(B)| = f ; is at most

(
b+f

b

)
. Moreover, all these sets can be enumerated in time

O
((

b+f
b

)
(n+m)b(b+ f)

)
.

Now we have all ingredients for out algorithm.

I Theorem 25. f-Isolated Highly Connected Subgraph can be solved in time
2O(k2/3 log k).

Proof. First of all we exhaustively apply reduction rules 20, 21, 22. From Lemma 23 follows
that we may assume 2k > s. We consider two cases either k2/3 < s or k2/3 ≥ s.

Case 1: s ≤ k2/3. Enumerate all induced connected subgraphs G′ = (V ′, E′) such that
|V ′| = s and N(V ′) ≤ k. If desired S exists than it is among enumerated sets. From
Proposition 24 follows that number of such sets is at most nkO∗(

(
s+k

s

)
). As s < 2k and

s < k2/3 we have nkO∗(
(

s+k
s

)
) ≤ O∗((s+ k)s) ≤ O∗(2k2/3 log k). Hence, in time O∗(2k2/3 log k)

we can enumerate all potential candidates S′. For each candidate we check in polynomial
time whether G[S′] is highly connected and |E(S′, V \S′)|+

∑
v∈S′

f(v) ≤ k.

Case 2: k
2
3 < s. Let set S be a solution. Define edge set E′ = E(S, V \ S). Consider

function d : S → N where d(v) = |N(v) ∩ (V \S)|. As
∑

v∈S

d(v) = |E(S, V \S)| ≤ k then

there is a vertex v ∈ S such that d(v) ≤ k
s < k

1
3 . Note that for such v we have |N(v)| =

|N(v) ∩ S| + |N(v) \ S| ≤ s + k
1
3 . We branch on possible values of such vertex and a set

of its neighbors that do not belong to S. In order to do this we have to consider at most
n
∑

i≤k1/3

(
s+k1/3

i

)
≤ nk1/322

√
(s+k1/3−i)i ≤ nk1/322

√
3k4/3 = n2O(k2/3) cases. Knowing vertex

v ∈ S and N(v) \ S we find N(v)∩ S. So we already identified at least s
2 + 1 vertices from S,

let denote this set by W . Now we start branching procedure that in right branch extend
set W into a solution set S. Branching procedure takes as an input tuple (G, k, s′,W,B)
where W is a set of vertices determined to be in solution S, B is a set of vertices determined
to be not in solution, k number of allowed edge deletions, s′ = s− |W | number of vertices
that is left to add. The procedure pick a vertex w /∈W ∪B and consider two cases either
w ∈ S,w /∈ B or w /∈ S,w ∈ B. The first call of the procedure is performed on tuple
(G, k − |E(W,N(v) \W )|, s− |W |,W,∅).

Consider arbitrary vertex x ∈ V \ (W ∪ B). If x ∈ S then |N(x) ∩ S| ≥ s
2 . Hence,

|N(x) ∩W | ≥ |N(x) ∩ S| − |S \W | ≥ s
2 − (s− |W |) = |W | − s

2 . So any vertex x such that

MFCS 2017
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|N(x)∩W | < |W |− s
2 cannot belong to solution S and we safely put x to B. Otherwise, we run

our procedure on tuples (G, k−|N(x)∩B|, s′−1,W∪x,B) and (G, k−|N(x)∩W |, s′,W,B∪x).
Note that we stop computation in a branch if k′ ≤ 0 or s′ = 0. It is easy to see that the
algorithm is correct.

It is left to determine the running time of the algorithm. Note that procedure contains
two parameters k and s′. In one branch we decrease value of s′ by one in the other branch
we decrease value of k by E(x,W ). Note that in first branch we not only decrease value of s′
but we also increase a lower bound on |N(x) ∩W | by 1 as |N(x) ∩W | ≥ |W | − s

2 .
Let us consider a path (x1, x2, . . . xl) from root to leaf in our branching tree. To each

node we assign a vertex xi on which we are branching at this node. For each such path we
construct unique sequence a1, a2, . . . , am and a number b. We put b equal to the number of
vertices from set {x1, x2, . . . , xl} that was assigned to solution S. And ai − 1 is a number
of vertices that was assigned to W in a sequence x1, x2, . . . xj where xj is an i−th vertex
assigned to B in this sequence. Note that |N(xj)∩W | ≥ ai, so

∑
i ai ≤ k. Note that for any

path from root to leaf we can construct a corresponding sequence ai and number b. Moreover,
any sequence a1, a2, . . . am and number b correspond to at most one path from root to node.

I Proposition 26. Given number b and non-decreasing sequence a1, a2, . . . , am we can
uniquely determine a corresponding path in a branching tree.

Proof. For a notation convenience we let a0 = 1. For 1 ≤ i ≤ m we perform the following
operation: we make ai − ai−1 steps of assigning vertices to a solution set, i.e. to set W and
make one step in branch assigning vertex to a set B. After m such iterations we perform
b−m steps of assigning vertices to solution. As a1, a2, . . . am is non-decreasing sequence we
have constructed a unique path in branching tree. It is easy to see that the original sequence
a1, . . . , am and number b correspond to a constructed path. So for each path from root to
leaf there is a corresponding sequence and for each sequence with a number there is at most
one corresponding path from root to node in a tree. J

I Lemma 27. The number of tuples (a1, . . . , am, b) where 0 ≤ b ≤ s, 1 ≤ ai ≤ ai+1 for
i < m, and

∑
i ai ≤ k is bounded by O∗

(
2O(√k)

)
Proof. For fixed l, tuples (a1, . . . , am) such that

∑
i ai = l are well-known and are called

partitions of l. Pribitkin [4] gave a simple upper bound e2.57
√

l on the number of partitions of

l. Hence, number of tuples (a1, . . . , am) is bounded by
k∑

i=0
e2.57

√
i ≤ (k+ 1)e2.57

√
k. Moreover,

we know that 0 ≤ b ≤ s. It means that the number of tuples (a1, . . . , am, b) is bounded by
(s+ 1)(k + 1)2O(√k). J

From Proposition 26 and Lemma 27 follows that the number of nodes in a branching tree
is at most s2O(√k). Hence, the running time of the procedure is at most s2O(√k).

Now, we compute required time for algorithm in this case(case 2). At first, we branch on
a vertex and its neighbors from solution set S. We did it by creating at most O∗

(
2O(k2/3)

)
subcases. In each subcase we run a procedure with running time O∗

(
2O(√k)

)
. So, the

overall runnning time equals to O∗
(

2O(√k)2O(k2/3)
)

= O∗
(

2O(k
2/3)
)
.

The worst running time has Case 1, so the running time of the whole algorithms is
O∗
(
kO(k

2/3)
)
. J
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