9 research outputs found
Θεωρία Νηματικών Δεσμών και η εφαρμογή τους στις Συμμετρίες
Η συμμετρία μίας διαφορικής εξίσωσης αποτελεί ένα σημειακό μετασχηματισμό ο οποίο αφήνει αναλλοίωτες την οικογένεια των λύσεων της διαφορικής εξίσωσης. Υπάρχουν τρεις βασικοί τύποι συμμετριών των διαφορικών εξισώσεων: Οι συμμετρίες Lie, οι Noether και οι Cartan. Εάν ο σημειακός μετασχηματισμός λαμβάνει χώρα στο θεσεογραφικό χώρο τότε η συμμετρία αποτελεί μία σημειακή συμμετρία, διαφορετικά καλείται δυναμική συμμετρία (dynamical symmetry).
Εκτός από αυτούς τους τύπους των συμμετριών των διαφορικών εξισώσεων υπάρχει και ένας ακόμα τύπος γεωμετρικών συμμετριών προερχόμενες από τα διανυσματικά πεδία X τα οποία αποτελούν λύση των εξισώσεων της μορφής L_X A= B, όπου το A αποτελεί ένα γεωμετρικό αντικείμενο το οποίο καθορίζεται μέσω της μετρικής και το B είναι ένα τανυστικό πεδίο με τον ίδιο αριθμό και τύπο δεικτών με αυτούς του A. Τέτοιοι τύποι συμμετριών αποτελούν τα διανυσματικά πεδία Killing, (Killing vectors), το ομοθετικό διανυσματικό πεδιο, (Homothetic Killing vector), τα σύμμορφα διανυσματικά πεδία Killing, (Conformal Killing vectors) κ.α..
Σε αυτή τη διδακτορική διατριβή μελετώνται οι συμμετρίες Lie, Noether και Cartan των εξισώσεων κίνησης, διαφορικών εξισώσεων δεύτερης τάξης ενός δυναμικού συστήματος. Επεκτείνουμε προηγούμενα αποτελέσματα κατά τα οποία οι συμμετρίες των διαφορικών εξισώσεων συσχετίζονται με τις γεωμετρικές συμμετρίες της μετρικής όπως αυτή καθορίζεται μέσω της κινητικής ενέργειας (kinetic metric) στην περίπτωση μη αυτόνομων δυναμικών συστημάτων που παρουσιάζουν γραμμική απόσβεση.
Εφαρμόζουμε τις συμμετρίες Cartan στην Κοσμολογία βαθμωτού πεδίου (scalar field Cosmology) χρησιμοποιώντας τη δισδιάστατη minisuperspace συνάρτηση Lagrange και προσδιορίζουμε τις συναρτήσεις Δυναμικού για τις οποίες τα επαγόμενα δυναμικά συστήματα είναι ολοκληρώσιμα. Σε κάθε περίπτωση προσδιορίζουμε την αντίστοιχη αναλυτική λύση.
Τέλος, αναπτύσσεται μια συστηματική μεθοδολογία μέσω της οποίας προσδιορίζονται όλα τα τετραγωνικά πρώτα ολοκληρώματα διαφορικών εξισώσεων, χωρίς τη χρήση συμμετριών αλλά χρησιμοποιώντας γεωμετρικές μεθόδους. Ακόμα, δείχνουμε πως κάθε τέτοιο πρώτο ολοκλήρωμα μπορεί να προκύψει ως ένα γενικευμένο ολοκλήρωμα Noether μέσω της χρήσης του αντίστροφου Θεωρήματος της Noether. Γι αυτό τον σκοπό εφαρμόζουμε την παραπάνω μεθοδολογία σε συγκεκριμένα παραδείγματα.A symmetry of a differential equation is a point transformation, which leaves invariant the set of solutions of the differential equation. There are three major types of symmetries of differential equations: The Lie, the Noether and the Cartan symmetries. If the point transformation of a symmetry of a differential equation is in the configuration space the symmetry is called a point symmetry, otherwise it is called a dynamical symmetry.
Besides the symmetries of differential equations there is a another type of geometrical symmetries which are point transformations, generated by the vectors X which are the solution of equations of the form L_X A= B, where A is a geometric object defined in terms of the metric and B is a tensor with the same number and type of indices and the same symmetries of indices with A. Well known types of geometric symmetries are the Killing vectors, the homothetic vector the conformal Killing vectors etc.
In this thesis we study the point and the dynamical Lie, Noether and the Cartan symmetries of the equations of motion of a dynamical system which are of the type of second order ordinary differential equations. We extent previous results which relate the symmetries of such a differential equation with the geometric symmetries of the metric defined by the kinetic energy of the dynamical system (kinetic metric) to the case of non-autonomous dynamical systems with a linear dissipation term.
We apply the Cartan symmetry method in scalar field Cosmology using the two dimensional minisuperspace Lagrangian and find the potentials for which the resulting dynamical system is integrable. In each case we determine the resulting analytic solution.
Finally, we propose a systematic methodology, which determines all the quadratic first integral of a second order differential equation without using symmetries but using instead geometric methods. We also show how every such integral can be interpreted as a generalized Noether integral by means of the inverse Noether theorem. We demonstrate the method in certain simple examples
Autonomous three dimensional Newtonian systems which admit Lie and Noether point symmetries
We determine the autonomous three dimensional Newtonian systems which admit
Lie point symmetries and the three dimensional autonomous Newtonian Hamiltonian
systems, which admit Noether point symmetries. We apply the results in order to
determine the two dimensional Hamiltonian dynamical systems which move in a
space of constant non-vanishing curvature and are integrable via Noether point
symmetries. The derivation of the results is geometric and can be extended
naturally to higher dimensions.Comment: Accepted for publication in Journal of Physics A: Math. and Theor.,13
page
Fiber bundles and their applications to symmetries
A symmetry of a differential equation is a point transformation which leaves invariant the set of solutions of the differential equation. There are three major types of symmetries of differential equations: The Lie, the Noether and the Cartan symmetries. If the point transformation of a symmetry of a differential equation is in the configuration space the symmetry is called a point symmetry, otherwise it is called a dynamical symmetry. Besides the symmetries of differential equations there is a another type of geometrical symmetries which are point transformations, generated by the vectors X which are the solution of equations of the form L_{X}A=B, where A is a geometric object defined in terms of the metric and B is a tensor with the same number and type of indices and the same symmetries of indices with A. Well known types of geometric symmetries are the Killing vectors, the homothetic vector the conformal Killing vectors etc. In this thesis we study the point and the dynamical Lie, Noether and the Cartan symmetries of the equations of motion of a dynamical system which are of the type of second order ordinary differential equations. We extent previous results which relate the symmetries of such a differential equation with the geometric symmetries of the metric defined by the kinetic energy of the dynamical system (kinetic metric) to the case of non-autonomous dynamical systems with a linear dissipation term. We apply the Cartan symmetry method in scalar field Cosmology using the two dimensional minisuperspace Lagrangian and find the potentials for which the resulting dynamical system is integrable. In each case we determine the resulting analytic solution. Finally we propose a systematic methodology which determines all the quadratic first integral of a second order differential equation without using symmetries but using instead geometric methods. We also show how every such integral can be interpreted as a generalized Noether integral by means of the inverse Noether theorem. We demonstrate the method in certain simple examples.Η συμμετρία μίας διαφορικής εξίσωσης αποτελεί ένα σημειακό μετασχηματισμό ο οποίο αφήνει αναλλοίωτες την οικογένεια των λύσεων της διαφορικής εξίσωσης. Υπάρχουν τρεις βασικοί τύποι συμμετριών των διαφορικών εξισώσεων: Οι συμμετρίες Lie, οι Noether και οι Cartan. Εάν ο σημειακός μετασχηματισμός λαμβάνει χώρα στο θεσεογραφικό χώρο τότε η συμμετρία αποτελεί μία σημειακή συμμετρία, διαφορετικά καλείται δυναμική συμμετρία (dynamical symmetry). Εκτός από αυτούς τους τύπους των συμμετριών των διαφορικών εξισώσεων υπάρχει και ένας ακόμα τύπος γεωμετρικών συμμετριών προερχόμενες από τα διανυσματικά πεδία X τα οποία αποτελούν λύση των εξισώσεων της μορφής L_X A= B, όπου το A αποτελεί ένα γεωμετρικό αντικείμενο το οποίο καθορίζεται μέσω της μετρικής και το B είναι ένα τανυστικό πεδίο με τον ίδιο αριθμό και τύπο δεικτών με αυτούς του A. Τέτοιοι τύποι συμμετριών αποτελούν τα διανυσματικά πεδία Killing, (Killing vectors), το ομοθετικό διανυσματικό πεδιο, (Homothetic Killing vector), τα σύμμορφα διανυσματικά πεδία Killing, (Conformal Killing vectors) κ.α.. Σε αυτή τη διδακτορική διατριβή μελετώνται οι συμμετρίες Lie, Noether και Cartan των εξισώσεων κίνησης, διαφορικών εξισώσεων δεύτερης τάξης ενός δυναμικού συστήματος. Επεκτείνουμε προηγούμενα αποτελέσματα κατά τα οποία οι συμμετρίες των διαφορικών εξισώσεων συσχετίζονται με τις γεωμετρικές συμμετρίες της μετρικής όπως αυτή καθορίζεται μέσω της κινητικής ενέργειας (kinetic metric) στην περίπτωση μη αυτόνομων δυναμικών συστημάτων που παρουσιάζουν γραμμική απόσβεση. Εφαρμόζουμε τις συμμετρίες Cartan στην Κοσμολογία βαθμωτού πεδίου (scalar field Cosmology) χρησιμοποιώντας τη δισδιάστατη minisuperspace συνάρτηση Lagrange και προσδιορίζουμε τις συναρτήσεις Δυναμικού για τις οποίες τα επαγόμενα δυναμικά συστήματα είναι ολοκληρώσιμα. Σε κάθε περίπτωση προσδιορίζουμε την αντίστοιχη αναλυτική λύση. Τέλος, αναπτύσσεται μια συστηματική μεθοδολογία μέσω της οποίας προσδιορίζονται όλα τα τετραγωνικά πρώτα ολοκληρώματα διαφορικών εξισώσεων, χωρίς τη χρήση συμμετριών αλλά χρησιμοποιώντας γεωμετρικές μεθόδους. Ακόμα, δείχνουμε πως κάθε τέτοιο πρώτο ολοκλήρωμα μπορεί να προκύψει ως ένα γενικευμένο ολοκλήρωμα Noether μέσω της χρήσης του αντίστροφου Θεωρήματος της Noether. Γι αυτό τον σκοπό εφαρμόζουμε την παραπάνω μεθοδολογία σε συγκεκριμένα παραδείγματα
Exact solutions of Bianchi I spacetimes which admit Conformal Killing Vectors
We develop a new method in order to classify the Bianchi I spacetimes
which admit Conformal Killing Vectors (CKVs). The method is based on two
propositions which relate the CKVs of 1 + (n - 1) decomposable
Riemannian spaces with the CKVs of the (n - 1) subspace and show that if
1 + (n - 1) space is conformally flat then the (n - 1) spacetime is
maximally symmetric. The method is used to study the conformal algebra
of the Kasner spacetime and other less known Bianchi type I matter
solutions of General Relativity
Autonomous three-dimensional Newtonian systems which admit Lie and Noether point symmetries
We determine the autonomous three-dimensional Newtonian systems which
admit Lie point symmetries and the three-dimensional autonomous
Newtonian Hamiltonian systems which admit Noether point symmetries. We
apply the results in order to determine the two-dimensional Hamiltonian
dynamical systems which move in a space of constant non-vanishing
curvature and are integrable via Noether point symmetries. The
derivation of the results is geometric and can be extended naturally to
higher dimensions