81 research outputs found

    The evolution of human influenza A viruses from 1999 to 2006: A complete genome study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge about the complete genome constellation of seasonal influenza A viruses from different countries is valuable for monitoring and understanding of the evolution and migration of strains. Few complete genome sequences of influenza A viruses from Europe are publicly available at the present time and there have been few longitudinal genome studies of human influenza A viruses. We have studied the evolution of circulating human H3N2, H1N1 and H1N2 influenza A viruses from 1999 to 2006, we analysed 234 Danish human influenza A viruses and characterised 24 complete genomes.</p> <p>Results</p> <p>H3N2 was the prevalent strain in Denmark during the study period, but H1N1 dominated the 2000–2001 season. H1N2 viruses were first observed in Denmark in 2002–2003. After years of little genetic change in the H1N1 viruses the 2005–2006 season presented H1N1 of greater variability than before. This indicates that H1N1 viruses are evolving and that H1N1 soon is likely to be the prevalent strain again. Generally, the influenza A haemagglutinin (HA) of H3N2 viruses formed seasonal phylogenetic clusters. Different lineages co-circulating within the same season were also observed. The evolution has been stochastic, influenced by small "jumps" in genetic distance rather than constant drift, especially with the introduction of the Fujian-like viruses in 2002–2003. Also evolutionary stasis-periods were observed which might indicate well fit viruses. The evolution of H3N2 viruses have also been influenced by gene reassortments between lineages from different seasons. None of the influenza genes were influenced by strong positive selection pressure. The antigenic site B in H3N2 HA was the preferred site for genetic change during the study period probably because the site A has been masked by glycosylations. Substitutions at CTL-epitopes in the genes coding for the neuraminidase (NA), polymerase acidic protein (PA), matrix protein 1 (M1), non-structural protein 1 (NS1) and especially the nucleoprotein (NP) were observed. The N-linked glycosylation pattern varied during the study period and the H3N2 isolates from 2004 to 2006 were highly glycosylated with ten predicted sequons in HA, the highest amount of glycosylations observed in this study period.</p> <p>Conclusion</p> <p>The present study is the first to our knowledge to characterise the evolution of complete genomes of influenza A H3N2, H1N1 and H1N2 isolates from Europe over a time period of seven years from 1999 to 2006. More precise knowledge about the circulating strains may have implications for predicting the following season strains and thereby better matching the vaccine composition.</p

    Rapid bedside inactivation of Ebola virus for safe nucleic acid tests

    Get PDF
    Rapid bedside inactivation of Ebola virus would be a solution for the safety of medical and technical staff, risk containment, sample transport and high-throughput or rapid diagnostic testing during an outbreak. We show that the commercially available MagNA Pure lysis/binding buffer used for nucleic acid extraction inactivates Ebola virus. A rapid bedside inactivation method for nucleic acid tests is obtained by simply adding MagNA Pure lysis/binding buffer directly into vacuum blood collection EDTA-tubes using a thin needle and syringe prior to sampling. The ready-to-use inactivation vacuum tubes are stable for more than 4 months and Ebola virus RNA is preserved in the MagNA Pure lysis/binding buffer for at least 5 weeks independent of the storage temperature. We also show that Ebola virus RNA can be manually extracted from MagNA Pure lysis/binding buffer-inactivated samples using the QIAamp Viral RNA mini kit. We present an easy and convenient method for bedside inactivation using available blood collection vacuum tubes and reagents. We propose to use this simple method for fast, safe and easy bedside inactivation of Ebola virus for safe transport and routine nucleic acid detection

    Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    Get PDF
    BACKGROUND: The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. METHODS: Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. RESULTS: The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene and a European “swine-like” N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish “avian-like” H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. CONCLUSIONS: The “avian-like” H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine “avian-like” H1N1 and H3N2. The Danish H1N2 has an “avian-like” H1 and differs from most other reported H1N2 viruses in Europe and North America/Asia, which have H1-genes of human or “classical-swine” origin, respectively. The variant seems, however, also to be circulating in countries like Sweden and Italy. The infection dynamics of the reassorted “avian-like” H1N2 is similar to the older “avian-like” H1N1 subtype

    Predominance of influenza A(H1N1)pdm09 virus genetic subclade 6B.1 and influenza B/Victoria lineage viruses at the start of the 2015/16 influenza season in Europe

    Get PDF
    Members of the World Health Organization European Region and European Influenza Surveillance Network of the reporting countries - Portugal: Raquel Guiomar, Pedro Pechirra, Paula CristovĂŁo, InĂŞs Costa, PatrĂ­cia Conde, Baltazar Nunes, Ana RodriguesInfluenza A(H1N1)pdm09 viruses predominated in the European influenza 2015/16 season. Most analysed viruses clustered in a new genetic subclade 6B.1, antigenically similar to the northern hemisphere vaccine component A/California/7/2009. The predominant influenza B lineage was Victoria compared with Yamagata in the previous season. It remains to be evaluated at the end of the season if these changes affected the effectiveness of the vaccine for the 2015/16 season.info:eu-repo/semantics/publishedVersio

    No difference in risk of hospitalization between reported cases of the SARS-CoV-2 Delta variant and Alpha variant in Norway

    Get PDF
    Objectives To estimate the risk of hospitalization among reported cases of the Delta variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) compared with the Alpha variant in Norway, and the risk of hospitalization by vaccination status. Methods A cohort study was conducted on laboratory-confirmed cases of SARS-CoV-2 in Norway, diagnosed between 3 May and 15 August 2021. Adjusted risk ratios (aRR) with 95% confidence intervals (CI) were calculated using multi-variable log-binomial regression, accounting for variant, vaccination status, demographic characteristics, week of sampling and underlying comorbidities. Results In total, 7977 cases of the Delta variant and 12,078 cases of the Alpha variant were included in this study. Overall, 347 (1.7%) cases were hospitalized. The aRR of hospitalization for the Delta variant compared with the Alpha variant was 0.97 (95% CI 0.76–1.23). Partially vaccinated cases had a 72% reduced risk of hospitalization (95% CI 59–82%), and fully vaccinated cases had a 76% reduced risk of hospitalization (95% CI 61–85%) compared with unvaccinated cases. Conclusions No difference was found between the risk of hospitalization for Delta cases and Alpha cases in Norway. The results of this study support the notion that partially and fully vaccinated cases are highly protected against hospitalization with coronavirus disease 2019.publishedVersio
    • …
    corecore