67 research outputs found

    An analysis of the methyl rotation dynamics in the S0 (X̃ 1A1) and T1 (ã 3A2) states of thioacetone, (CH3)2 CS and (CD 3)2 CS from pyrolysis jet spectra

    Get PDF
    Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetone (CH3)2CS/(CD3)2 CS have been recorded over the region 16 800-18 500 cm-1 using the pyrolysis jet spectroscopic technique. The responsible electronic transition, T 1 ←-S0, ã 3 A ″ ← X̃ 1A1, results from an n → π* electron promotion and gives rise to a pattern of vibronic bands that were attributed to activity of the methyl torsion and the sulphur out-of-plane wagging modes. The intensities of the torsional and wagging progressions in the excitation spectra were interpreted in terms of a C2υ-Cs molecular distortion of the triplet molecule from its singlet ground state equilibrium structure. A complete unrestricted Hartree-Fock (UHF) ab initio molecular orbital (MO) structural optimization of the T1 state predicted that the sulphur was displaced by 27.36° from the molecular plane and the methyl groups were rotated by 10.93° in clockwise-counterclockwise directions. Restricted Hartree-Fock (RHF) calculations were used to generate the F(θ1,θ2) potential surface governing methyl rotation for the S0 state. This was incorporated into a two-dimensional Hamiltonian, symmetrized for the G36 point group and solved variationally for the torsional frequencies. The calculated frequencies of 159.97/118.94 for the ν17 (b1) mode of S0 (CH3)2CS/(CD3)2 CS were found to agree with the experimental values, 153.2/114.7 cm-1. © 1991 American Institute of Physics.The authors are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support of this work. D. J. C. acknowledges the support of the National Science Foundation through Grant No. CHE-8914403.Peer Reviewe

    Angiofil®-mediated visualization of the vascular system by microcomputed tomography: a feasibility study

    Get PDF
    Visualization of the vascular systems of organs or of small animals is important for an assessment of basic physiological conditions, especially in studies that involve genetically manipulated mice. For a detailed morphological analysis of the vascular tree, it is necessary to demonstrate the system in its entirety. In this study, we present a new lipophilic contrast agent, Angiofil®, for performing postmortem microangiography by using microcomputed tomography. The new contrast agent was tested in 10 wild-type mice. Imaging of the vascular system revealed vessels down to the caliber of capillaries, and the digital three-dimensional data obtained from the scans allowed for virtual cutting, amplification, and scaling without destroying the sample. By use of computer software, parameters such as vessel length and caliber could be quantified and remapped by color coding onto the surface of the vascular system. The liquid Angiofil® is easy to handle and highly radio-opaque. Because of its lipophilic abilities, it is retained intravascularly, hence it facilitates virtual vessel segmentation, and yields an enduring signal which is advantageous during repetitive investigations, or if samples need to be transported from the site of preparation to the place of actual analysis, respectively. These characteristics make Angiofil® a promising novel contrast agent; when combined with microcomputed tomography, it has the potential to turn into a powerful method for rapid vascular phenotyping

    Inducible cAMP Early Repressor (ICER) and Brain Functions

    Get PDF
    The inducible cAMP early repressor (ICER) is an endogenous repressor of cAMP-responsive element (CRE)-mediated gene transcription and belongs to the CRE-binding protein (CREB)/CRE modulator (CREM)/activating transcription factor 1 (ATF-1) gene family. ICER plays an important role in regulating the neuroendocrine system and the circadian rhythm. Other aspects of ICER function have recently attracted heightened attention. Being a natural inducible CREB antagonist, and more broadly, an inducible repressor of CRE-mediated gene transcription, ICER regulates long-lasting plastic changes that occur in the brain in response to incoming stimulation. This review will bring together data on ICER and its functions in the brain, with a special emphasis on recent findings highlighting the involvement of ICER in the regulation of long-term plasticity underlying learning and memory

    The Aromatase Gene CYP19A1: Several Genetic and Functional Lines of Evidence Supporting a Role in Reading, Speech and Language

    Full text link

    An analysis of the methyl rotation and aldehyde wagging dynamics in the S0 (X̃ 1A′) and T1 (ã3A″) states of thioacetaldehyde from pyrolysis jet spectra

    Get PDF
    9 pags., 7 figs., 5 tabs.Jet-cooled, laser induced phosphorescence (LIP) excitation spectra of thioacetaldehyde (CH3CHS, CH3CDS, CD3CHS, and CD3CDS) have been observed in the 15 800-17 300 cm-1 region in a continuous pyrolysis jet. The responsible electronic transition, T1 ← S0, ã3A″ ← X̃ 1A′, results from an n → π* electron promotion and gives rise to a pattern of vibronic bands that can be attributed to activity of the methyl torsion and the aldehyde hydrogen out-of-plane wagging modes. Potential and kinetic energy surfaces were mapped out for the aldehyde wagging (α) and the torsional (Θ) internal coordinates by using 6-31G* Hartree-Fock calculations in which the structural parameters were fully relaxed. The potential and kinetic energy data points were fitted to double Fourier expansions in α and Θ and were incorporated into a two-dimensional Hamiltonian operator. The spectrum was simulated from the transition energies and the Franck-Condon factors and was compared to the observed jet cooled LIP spectra. It was concluded that while the RHF procedure gives a good description to the ground state dynamics, the triplet state surface generated by the UHF method is too bumpy and undulating. © 1992 American Institute of Physics.D.C.M. and H. B. would like to thank the Natural Sciences and Engineering Research Council of Canada for financial support of this work. D.l.C. and 1.K. acknowledge the support of the National Science Foundation through Grant No. CHE-8914403. Y. G. S. and A. N. wish to thank the Comision Interministerial de Ciencias y Technologia for economic support through Grant No. PB 90- 0167

    Influence of Silver Colloid on Fluorescein Spectral Properties

    No full text
    In order to check if the observed earlier changes in fluorescence intensities of fluorescein solution due to the addition of colloidal suspension of silver are related to the generation of surface plasmon coupled emission, the steady state photothermal spectra and fluorescence decay times of such samples were measured. The Gaussian components of photoacoustic spectra for solutions with and without silver colloid addition were determined and compared with components of absorption and fluorescence excitation spectra of the same samples. The efficiencies of thermal and radiative deactivation of various samples were discussed. The fluorescence decay times measured at the wavelength of excitation not exhibiting the increase in photonic mode density depend only on the dye concentration. Decays exhibit changes as a result of silver addition with excitation in the region in which enhancement of fluorescence is observed. These changes are due not only to the change in the fluorescence yield generated by interactions with plasmons but also to those in thermal deactivation of the sample related to the colloid presence
    corecore