184 research outputs found

    Long-Term Observation of the Adirondack Ecosystem - Data from the SUNY ESF Newcomb Campus

    Get PDF
    The Adirondack Ecological Center (AEC) at ESF’s Newcomb Campus has one of the oldest and broadest records of scientific field research in North America. Located on the Anna and Archer Huntington Wildlife Forest, AEC is a biological field station and multi-disciplinary platform for research, education and outreach where the most pressing environmental challenges facing our society can be directly examined and understood. The Newcomb Campus (www.esf.edu/newcomb) includes the AEC, Northern Forest Institute, public Adirondack Interpretive Center and Forest Operations Adirondack Properties unit. The campus’ professional staff and scientists collectively maintain extensive data archives from a century of observation. This paper provides a “road map” for researchers, students, historians and others on what resources exist and how to access them

    A new proposal regarding the transport mechanism of mercury in biological membranes

    Get PDF
    The interactions of mercury (Hg2+) with biological membranes have been investigated. The experimental results indicate that Hg2+ induces a rapid alkalinization in energized Lysosomes from rat liver. The interpretation of the process is that the mercury enters the Lysosomes as a Hg(OH)2 electroneutral compound, thus inducing alkalinization in the matrix

    Imaging cortical activity following affective stimulation with a high temporal and spatial resolution

    Get PDF
    Keil J, Adenauer H, Catani C, Neuner F. Imaging cortical activity following affective stimulation with a high temporal and spatial resolution. BMC Neuroscience. 2009;10(1):83.Background:The affective and motivational relevance of a stimulus has a distinct impact on cortical processing, particularly in sensory areas. However, the spatial and temporal dynamics of this affective modulation of brain activities remains unclear. The purpose of the present study was the development of a paradigm to investigate the affective modulation of cortical networks with a high temporal and spatial resolution. We assessed cortical activity with MEG using a visual steady-state paradigm with affective pictures. A combination of a complex demodulation procedure with a minimum norm estimation was applied to assess the temporal variation of the topography of cortical activity. Results: Statistical permutation analyses of the results of the complex demodulation procedure revealed increased steady-state visual evoked field amplitudes over occipital areas following presentation of affective pictures compared to neutral pictures. This differentiation shifted in the time course from occipital regions to parietal and temporal regions. Conclusion: It can be shown that stimulation with affective pictures leads to an enhanced activity in occipital region as compared to neutral pictures. However, the focus of differentiation is not stable over time but shifts into temporal and parietal regions within four seconds of stimulation. Thus, it can be crucial to carefully choose regions of interests and time intervals when analyzing the affective modulation of cortical activity

    Narrative exposure therapy for PTSD increases top-down processing of aversive stimuli - evidence from a randomized controlled treatment trial

    Get PDF
    Adenauer H, Catani C, Gola H, et al. Narrative exposure therapy for PTSD increases top-down processing of aversive stimuli - evidence from a randomized controlled treatment trial. BMC Neuroscience. 2011;12(1): 127.BACKGROUND: Little is known about the neurobiological foundations of psychotherapy for Posttraumatic Stress Disorder (PTSD). Prior studies have shown that PTSD is associated with altered processing of threatening and aversive stimuli. It remains unclear whether this functional abnormality can be changed by psychotherapy. This is the first randomized controlled treatment trial that examines whether narrative exposure therapy (NET) causes changes in affective stimulus processing in patients with chronic PTSD. METHODS: 34 refugees with PTSD were randomly assigned to a NET group or to a waitlist control (WLC) group. At pre-test and at four-months follow-up, the diagnostics included the assessment of clinical variables and measurements of neuromagnetic oscillatory brain activity (steady-state visual evoked fields, ssVEF) resulting from exposure to aversive pictures compared to neutral pictures. RESULTS: PTSD as well as depressive symptom severity scores declined in the NET group, whereas symptoms persisted in the WLC group. Only in the NET group, parietal and occipital activity towards threatening pictures increased significantly after therapy. CONCLUSIONS: Our results indicate that NET causes an increase of activity associated with cortical top-down regulation of attention towards aversive pictures. The increase of attention allocation to potential threat cues might allow treated patients to re-appraise the actual danger of the current situation and, thereby, reducing PTSD symptoms. REGISTRATION OF THE CLINICAL TRIAL: Number: NCT00563888Name: "Change of Neural Network Indicators Through Narrative Treatment of PTSD in Torture Victims" ULR: http://www.clinicaltrials.gov/ct2/show/NCT00563888

    Applauding with Closed Hands: Neural Signature of Action-Sentence Compatibility Effects

    Get PDF
    BACKGROUND: Behavioral studies have provided evidence for an action-sentence compatibility effect (ACE) that suggests a coupling of motor mechanisms and action-sentence comprehension. When both processes are concurrent, the action sentence primes the actual movement, and simultaneously, the action affects comprehension. The aim of the present study was to investigate brain markers of bidirectional impact of language comprehension and motor processes. METHODOLOGY/PRINCIPAL FINDINGS: Participants listened to sentences describing an action that involved an open hand, a closed hand, or no manual action. Each participant was asked to press a button to indicate his/her understanding of the sentence. Each participant was assigned a hand-shape, either closed or open, which had to be used to activate the button. There were two groups (depending on the assigned hand-shape) and three categories (compatible, incompatible and neutral) defined according to the compatibility between the response and the sentence. ACEs were found in both groups. Brain markers of semantic processing exhibited an N400-like component around the Cz electrode position. This component distinguishes between compatible and incompatible, with a greater negative deflection for incompatible. Motor response elicited a motor potential (MP) and a re-afferent potential (RAP), which are both enhanced in the compatible condition. CONCLUSIONS/SIGNIFICANCE: The present findings provide the first ACE cortical measurements of semantic processing and the motor response. N400-like effects suggest that incompatibility with motor processes interferes in sentence comprehension in a semantic fashion. Modulation of motor potentials (MP and RAP) revealed a multimodal semantic facilitation of the motor response. Both results provide neural evidence of an action-sentence bidirectional relationship. Our results suggest that ACE is not an epiphenomenal post-sentence comprehension process. In contrast, motor-language integration occurring during the verb onset supports a genuine and ongoing brain motor-language interaction

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia
    corecore