500 research outputs found

    Architectural/Environmental Handbook for Extraterrestrial Design

    Get PDF
    Handbook on environmental and space utilization criteria for design of extraterrestrial manned spacecraft and shelter

    Genomic Classifier Augments the Role of Pathological Features in Identifying Optimal Candidates for Adjuvant Radiation Therapy in Patients With Prostate Cancer: Development and Internal Validation of a Multivariable Prognostic Model.

    Get PDF
    Purpose Despite documented oncologic benefit, use of postoperative adjuvant radiotherapy (aRT) in patients with prostate cancer is still limited in the United States. We aimed to develop and internally validate a risk-stratification tool incorporating the Decipher score, along with routinely available clinicopathologic features, to identify patients who would benefit the most from aRT. Patient and Methods Our cohort included 512 patients with prostate cancer treated with radical prostatectomy at one of four US academic centers between 1990 and 2010. All patients had ≥ pT3a disease, positive surgical margins, and/or pathologic lymph node invasion. Multivariable Cox regression analysis tested the relationship between available predictors (including Decipher score) and clinical recurrence (CR), which were then used to develop a novel risk-stratification tool. Our study adhered to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for development of prognostic models. Results Overall, 21.9% of patients received aRT. Median follow-up in censored patients was 8.3 years. The 10-year CR rate was 4.9% vs. 17.4% in patients treated with aRT versus initial observation ( P \u3c .001). Pathologic T3b/T4 stage, Gleason score 8-10, lymph node invasion, and Decipher score \u3e 0.6 were independent predictors of CR (all P \u3c .01). The cumulative number of risk factors was 0, 1, 2, and 3 to 4 in 46.5%, 28.9%, 17.2%, and 7.4% of patients, respectively. aRT was associated with decreased CR rate in patients with two or more risk factors (10-year CR rate 10.1% in aRT v 42.1% in initial observation; P = .012), but not in those with fewer than two risk factors ( P = .18). Conclusion Using the new model to indicate aRT might reduce overtreatment, decrease unnecessary adverse effects, and reduce risk of CR in the subset of patients (approximately 25% of all patients with aggressive pathologic disease in our cohort) who benefit from this therapy

    Novel rat tail discitis model using bioluminescent Staphylococcus aureus

    Get PDF
    Management of spondylodiscitis is a challenging clinical problem requiring medical and surgical treatment strategies. The purpose of this study was to establish a rat model of spondylodiscitis that utilizes bioluminescent Staphylococcus aureus, thus permitting in-vivo surveillance of infection intensity. Inocula of the bioluminescent S. aureus strain XEN36 were created in concentrations of 102 CFU/0.1 mL, 104 CFU/0.1 mL, and 106 CFU/0.1 mL. Three groups of rats were injected with the bacteria in the most proximal intervertebral tail segment. The third most proximal tail segment was injected with saline as a control. Bioluminescence was measured at baseline, 3 days, and weekly for a total of 6 weeks. Detected bioluminescence for each group peaked at day three and returned to baseline at 21 days. The average intensity was highest for the experimental group injected with the most concentrated bacterial solution (106 CFU/0.1 mL). Radiographic analysis revealed loss of intervertebral disc space and evidence of osseous bridging. Saline injected spaces exhibited no decrease in intervertebral spacing as compared to distal sites. Histologic analysis revealed neutrophilic infiltrates, destruction of the annulus fibrosus and nucleus pulposus, destruction of vertebral endplates, and osseous bridging. Saline injected discs exhibited preserved annulus fibrosus and nucleus pulposus on histology. This study demonstrates that injection of bioluminescent S. aureus into the intervertebral disc of a rat tail is a viable animal model for spondylodiscitis research. This model allows for real-time, in-vivo quantification of infection intensity, which may decrease the number of animals required for infection studies of the intervertebral disc

    Antiangiogenic Effects and Therapeutic Targets of Azadirachta indica Leaf Extract in Endothelial Cells

    Get PDF
    Azadirachta indica (common name: neem) leaves have been found to possess immunomodulatory, anti-inflammatory and anti-carcinogenic properties. The present study evaluates anti-angiogenic potential of ethanol extract of neem leaves (EENL) in human umbilical vein endothelial cells (HUVECs). Treatment of HUVECs with EENL inhibited VEGF induced angiogenic response in vitro and in vivo. The in vitro proliferation, invasion and migration of HUVECs were suppressed with EENL. Nuclear fragmentation and abnormally small mitochondria with dilated cristae were observed in EENL treated HUVECs by transmission electron microscopy. Genome-wide mRNA expression profiling after treatment with EENL revealed differentially regulated genes. Expression changes of the genes were validated by quantitative real-time polymerase chain reaction. Additionally, increase in the expression of HMOX1, ATF3 and EGR1 proteins were determined by immunoblotting. Analysis of the compounds in the EENL by mass spectrometry suggests the presence of nimbolide, 2′,3′-dehydrosalannol, 6-desacetyl nimbinene and nimolinone. We further confirmed antiproliferative activity of nimbolide and 2′,3′-dehydrosalannol in HUVECs. Our results suggest that EENL by regulating the genes involved in cellular development and cell death functions could control cell proliferation, attenuate the stimulatory effects of VEGF and exert antiangiogenic effects. EENL treatment could have a potential therapeutic role during cancer progression

    Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer.

    Get PDF
    BACKGROUND: Hypoxia is associated with a poor prognosis in prostate cancer. This work aimed to derive and validate a hypoxia-related mRNA signature for localized prostate cancer. METHOD: Hypoxia genes were identified in vitro via RNA-sequencing and combined with in vivo gene co-expression analysis to generate a signature. The signature was independently validated in eleven prostate cancer cohorts and a bladder cancer phase III randomized trial of radiotherapy alone or with carbogen and nicotinamide (CON). RESULTS: A 28-gene signature was derived. Patients with high signature scores had poorer biochemical recurrence free survivals in six of eight independent cohorts of prostatectomy-treated patients (Log rank test P \u3c .05), with borderline significances achieved in the other two (P \u3c .1). The signature also predicted biochemical recurrence in patients receiving post-prostatectomy radiotherapy (n = 130, P = .007) or definitive radiotherapy alone (n = 248, P = .035). Lastly, the signature predicted metastasis events in a pooled cohort (n = 631, P = .002). Prognostic significance remained after adjusting for clinic-pathological factors and commercially available prognostic signatures. The signature predicted benefit from hypoxia-modifying therapy in bladder cancer patients (intervention-by-signature interaction test P = .0026), where carbogen and nicotinamide was associated with improved survival only in hypoxic tumours. CONCLUSION: A 28-gene hypoxia signature has strong and independent prognostic value for prostate cancer patients

    TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup.

    Get PDF
    Purpose: Current clinical parameters do not stratify indolent from aggressive prostate cancer. Aggressive prostate cancer, defined by the progression from localized disease to metastasis, is responsible for the majority of prostate cancer–associated mortality. Recent gene expression profiling has proven successful in predicting the outcome of prostate cancer patients; however, they have yet to provide targeted therapy approaches that could inhibit a patient\u27s progression to metastatic disease. Experimental Design: We have interrogated a total of seven primary prostate cancer cohorts (n = 1,900), two metastatic castration-resistant prostate cancer datasets (n = 293), and one prospective cohort (n = 1,385) to assess the impact of TOP2A and EZH2 expression on prostate cancer cellular program and patient outcomes. We also performed IHC staining for TOP2A and EZH2 in a cohort of primary prostate cancer patients (n = 89) with known outcome. Finally, we explored the therapeutic potential of a combination therapy targeting both TOP2A and EZH2 using novel prostate cancer–derived murine cell lines. Results: We demonstrate by genome-wide analysis of independent primary and metastatic prostate cancer datasets that concurrent TOP2A and EZH2 mRNA and protein upregulation selected for a subgroup of primary and metastatic patients with more aggressive disease and notable overlap of genes involved in mitotic regulation. Importantly, TOP2A and EZH2 in prostate cancer cells act as key driving oncogenes, a fact highlighted by sensitivity to combination-targeted therapy. Conclusions: Overall, our data support further assessment of TOP2A and EZH2 as biomarkers for early identification of patients with increased metastatic potential that may benefit from adjuvant or neoadjuvant targeted therapy approaches. ©2017 AACR

    RISK FACTORS FOR RESIDUAL DISEASE AT RE-TUR IN T1G3 BLADDER CANCER

    Get PDF
    INTRODUCTION AND OBJECTIVES: Goals of transurethral resection of a bladder tumour (TUR) are to completely resect the lesions and to make a correct diagnosis in order to adequately stage the patient. It is well known that the presence of detrusor muscle in the specimen is a prerequisite to minimize the risk of under staging. Persistent disease after resection of bladder tumours is not uncommon and is the reason why the European Guidelines recommended a reTUR for all T1 tumours. It was recently published that when there is muscle in the specimen, re-TUR does not influence progression or cancer specific survival. We present here the patient and tumour factors that may influence the presence of residual disease at re-TUR. METHODS: In our retrospective cohort of 2451 primary T1G3 patients initially treated with BCG, pathology results for 934 patients (38.1%) who underwent re-TUR are available. 75.4% had multifocal tumours, 42.7% of tumours were more than 3 cm in diameter and 25.8% had concomitant CIS. We analyse this subgroup of patients who underwent re-TUR: there was no residual disease in 267 patients (28.6%) and residual disease in 667 patients (71.4%): Ta in 378 (40.5%) and T1 in 289 (30.9%) patients. Age, gender, tumour status (primary/recurrent), previous intravesical therapy, tumour size, tumour multi-focality, presence of concomitant CIS, and muscle in the specimen were analysed in order to evaluate risk factors of residual disease at re-TUR, both in univariate analyses and multivariate logistic regressions. RESULTS: The following were not risk factors for residual disease: age, gender, tumour status and previous intravesical chemotherapy. The following were univariate risk factors for presence of residual disease: no muscle in TUR, multiple tumours, tumours > 3 cm, and presence of concomitant CISDue to the correlation between tumor multi-focality and tumor size, the multivariate model retained either the number of tumors or the tumor diameter (but not both), p < 0.001. The presence of muscle in the specimen was no longer significant, p ¼ 0.15, while the presence of CIS only remained significant in the model with tumor size, p < 0.001. CONCLUSIONS: The most significant factors for a higher risk of residual disease at re-TUR in T1G3 patients are multifocal tumours and tumours more than 3 cm. Patients with concomitant CIS and those without muscle in the specimen also have a higher risk of residual disease

    Establishing key research questions for the implementation of artificial intelligence in colonoscopy - a modified Delphi method

    Get PDF
    Background and Aims Artificial intelligence (AI) research in colonoscopy is progressing rapidly but widespread clinical implementation is not yet a reality. We aimed to identify the top implementation research priorities. Methods An established modified Delphi approach for research priority setting was used. Fifteen international experts, including endoscopists and translational computer scientists/engineers from 9 countries participated in an online survey over 9 months. Questions related to AI implementation in colonoscopy were generated as a long-list in the first round, and then scored in two subsequent rounds to identify the top 10 research questions. Results The top 10 ranked questions were categorised into 5 themes. Theme 1: Clinical trial design/end points (4 questions), related to optimum trial designs for polyp detection and characterisation, determining the optimal end-points for evaluation of AI and demonstrating impact on interval cancer rates. Theme 2: Technological Developments (3 questions), including improving detection of more challenging and advanced lesions, reduction of false positive rates and minimising latency. Theme 3: Clinical adoption/Integration (1 question) concerning effective combination of detection and characterisation into one workflow. Theme 4: Data access/annotation (1 question) concerning more efficient or automated data annotation methods to reduce the burden on human experts. Theme 5: Regulatory Approval (1 question) related to making regulatory approval processes more efficient. Conclusions This is the first reported international research priority setting exercise for AI in colonoscopy. The study findings should be used as a framework to guide future research with key stakeholders to accelerate the clinical implementation of AI in endoscopy
    corecore