388 research outputs found

    Radiometric age constraints for glacial terminations IX and VII

    Get PDF
    Buried sedimentary aggradational sections deposited between 800 ka and 600 ka in the Tiber River coastal alluvial plain have been studied using borecores from around Rome. 40Ar/39Ar ages on sanidine and/or leucite from intercalated tephra layers and paleomagnetic investigation of clay sections provide geochronological constraints on the timing of aggradation of two of these alluvial sections, and demonstrate that they were deposited in response to eustatic sea level rise caused by glacial terminations IX and VII. 40Ar/39Ar age data indicate ages of 802 ± 8 ka and 649 ± 3 ka for glacial terminations IX, and VII, respectively, providing a rare test, beyond the range of U-series dating for corals and speleothems (~500 ka), of the astronomically calibrated timescale developed for oxygen isotope records from deep sea cores

    Assessing the volcanic hazard for Rome. 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District

    Get PDF
    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993–2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD

    40Ar/39Ar and 14C geochronology of the Albano maar deposits: Implications for 2 defining the age and eruptive style of the most recent explosive activity at Colli 3 Albani Volcanic District, Central Italy

    Get PDF
    New 40Ar/39Ar and 14C ages have been found for the Albano multiple maar pyroclastic units and underlying 25 paleosols to document the most recent explosive activity in the Colli Albani Volcanic District (CAVD) near 26 Rome, Italy, consisting of seven eruptions (Albano 1 27 ^ = ^ oldest). Both dating methodologies have been applied on several proximal units and on four mid-distal fall/surge deposits, the latter correlated, according to two 28 current different views, to either the Albano or the Campi di Annibale hydromagmatic center. The 40Ar/39Ar 29 ages on leucite phenocrysts from the mid-distal units yielded ages of ca. 72 ka, 73 ka, 41 ka and 36 ka BP, 30 which are indistinguishable from the previously determined 40Ar/39Ar ages of the proximal Albano units 1, 2, 31 5 and 7, thus confirming their stratigraphic correspondence. 32 Twenty-one 14C ages of the paleosols beneath Albano units 3, 5, 6 and 7 were found for samples collected 33 from 13 proximal and distal sections, some of which were the same sections sampled for 40Ar/39Ar 34 measurements. The 14C ages were found to be stratigraphically inconsistent and highly scattered, and were 35 systematically younger than the 40Ar/39Ar ages, ranging 36 ^ from 35 ka ^ to 3 ka. Considering the significant consistence of the 40Ar/39Ar chronological framework, we interpret the scattered and contradictory 14C ages 37 to be the result of a variable contamination of the paleosols by younger organic carbon deriving from the 38 superficial soil horizons. 39 These results suggest that multiple isotopic systems anchored to a robust stratigraphic framework may need 40 to be employed to determine accurately the geochronology of the CAVD as well as other volcanic districts. 4

    Logarithmic rate dependence in deforming granular materials

    Full text link
    Rate-independence for stresses within a granular material is a basic tenet of many models for slow dense granular flows. By contrast, logarithmic rate dependence of stresses is found in solid-on-solid friction, in geological settings, and elsewhere. In this work, we show that logarithmic rate-dependence occurs in granular materials for plastic (irreversible) deformations that occur during shearing but not for elastic (reversible) deformations, such as those that occur under moderate repetitive compression. Increasing the shearing rate, \Omega, leads to an increase in the stress and the stress fluctuations that at least qualitatively resemble what occurs due to an increase in the density. Increases in \Omega also lead to qualitative changes in the distributions of stress build-up and relaxation events. If shearing is stopped at t=0, stress relaxations occur with \sigma(t)/ \sigma(t=0) \simeq A \log(t/t_0). This collective relaxation of the stress network over logarithmically long times provides a mechanism for rate-dependent strengthening.Comment: 4 pages, 5 figures. RevTeX

    Ionic and electronic properties of the topological insulator Bi2_2Te2_2Se investigated using β\beta-detected nuclear magnetic relaxation and resonance of 8^8Li

    Full text link
    We report measurements on the high temperature ionic and low temperature electronic properties of the 3D topological insulator Bi2_2Te2_2Se using ion-implanted 8^8Li β\beta-detected nuclear magnetic relaxation and resonance. With implantation energies in the range 5-28 keV, the probes penetrate beyond the expected range of the topological surface state, but are still within 250 nm of the surface. At temperatures above ~150 K, spin-lattice relaxation measurements reveal isolated 8^8Li+^{+} diffusion with an activation energy EA=0.185(8)E_{A} = 0.185(8) eV and attempt frequency τ0−1=8(3)×1011\tau_{0}^{-1} = 8(3) \times 10^{11} s−1^{-1} for atomic site-to-site hopping. At lower temperature, we find a linear Korringa-like relaxation mechanism with a field dependent slope and intercept, which is accompanied by an anomalous field dependence to the resonance shift. We suggest that these may be related to a strong contribution from orbital currents or the magnetic freezeout of charge carriers in this heavily compensated semiconductor, but that conventional theories are unable to account for the extent of the field dependence. Conventional NMR of the stable host nuclei may help elucidate their origin.Comment: 17 pages, 12 figures, submitted to Phys. Rev.
    • …
    corecore