6 research outputs found

    Cardio-Onco-Metabolism – Metabolic Vulnerabilities in Cancer and the Heart

    Get PDF
    Cancer and cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic remodeling is a hallmark of both cancer and the failing heart. Tumors reprogram metabolism to optimize nutrient utilization and meet increased demands for energy provision, biosynthetic pathways, and proliferation. Shared risk factors for cancer and CVDs suggest intersecting mechanisms for disease pathogenesis and progression. In this review, we aim to highlight the role of metabolic remodeling in cancer and its potential to impair cardiac function. Understanding these mechanisms will help us develop biomarkers, better therapies, and identify patients at risk of developing heart disease after surviving cancer

    Actionable Metabolic Pathways in Heart Failure and Cancer—Lessons From Cancer Cell Metabolism

    Get PDF
    Recent advances in cancer cell metabolism provide unprecedented opportunities for a new understanding of heart metabolism and may offer new approaches for the treatment of heart failure. Key questions driving the cancer field to understand how tumor cells reprogram metabolism and to benefit tumorigenesis are also applicable to the heart. Recent experimental and conceptual advances in cancer cell metabolism provide the cardiovascular field with the unique opportunity to target metabolism. This review compares cancer cell metabolism and cardiac metabolism with an emphasis on strategies of cellular adaptation, and how to exploit metabolic changes for therapeutic benefit

    Intracellular sodium elevation reprograms cardiac metabolism

    Get PDF
    Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodeling occurs. We assessed whether acute (75μM ouabain 100nM blebbistatin) and chronic myocardial Naiload (PLM3SA mouse) are causally linked to metabolic remodeling and whether the hypertrophied failing heart shares a common Na-mediated metabolic ‘fingerprint’. Control (PLMWT), transgenic (PLM3SA), ouabain treated and hypertrophied Langendorff-perfused mouse hearts were studied by 23Na, 31P, 13C NMR followed by 1H NMR metabolomic profiling. Elevated Nai leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorated the metabolic changes. In silico modelling indicated altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Nai overload or inhibition of Na/Camitomay be a new approach to ameliorate metabolic dysregulation in heart failure

    Cardio-onco-metabolism:metabolic remodelling in cardiovascular disease and cancer

    Get PDF
    Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism

    Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis

    No full text
    International audienceImmune checkpoint inhibitors (ICI) have transformed the therapeutic landscape in oncology. However, ICI can induce uncommon life-threatening autoimmune T-cell-mediated myotoxicities, including myocarditis and myositis. The thymus plays a critical role in T cell maturation. Here we demonstrate that thymic alterations are associated with increased incidence and severity of ICI myotoxicities. First, using the international pharmacovigilance database VigiBase, the Assistance Publique Hôpitaux de Paris–Sorbonne University data warehouse (Paris, France) and a meta-analysis of clinical trials, we show that ICI treatment of thymic epithelial tumors (TET, and particularly thymoma) was more frequently associated with ICI myotoxicities than other ICI-treated cancers. Second, in an international ICI myocarditis registry, we established that myocarditis occurred earlier after ICI initiation in patients with TET (including active or prior history of TET) compared to other cancers and was more severe in terms of life-threatening arrythmias and concurrent myositis, leading to respiratory muscle failure and death. Lastly, we show that presence of anti-acetylcholine-receptor antibodies (a biological proxy of thymic-associated autoimmunity) was more prevalent in patients with ICI myocarditis than in ICI-treated control patients. Altogether, our results highlight that thymic alterations are associated with incidence and seriousness of ICI myotoxicities. Clinico-radio-biological workup evaluating the thymus may help in predicting ICI myotoxicities
    corecore