1,020 research outputs found

    A convergent nonconforming finite element method for compressible Stokes flow

    Get PDF
    We propose a nonconforming finite element method for isentropic viscous gas flow in situations where convective effects may be neglected. We approximate the continuity equation by a piecewise constant discontinuous Galerkin method. The velocity (momentum) equation is approximated by a finite element method on div-curl form using the nonconforming Crouzeix-Raviart space. Our main result is that the finite element method converges to a weak solution. The main challenge is to demonstrate the strong convergence of the density approximations, which is mandatory in view of the nonlinear pressure function. The analysis makes use of a higher integrability estimate on the density approximations, an equation for the "effective viscous flux", and renormalized versions of the discontinuous Galerkin method.Comment: 23 page

    Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation

    Get PDF
    We consider conservation laws with source terms in a bounded domain with Dirichlet boundary conditions. We first prove the existence of a strong trace at the boundary in order to provide a simple formulation of the entropy boundary condition. Equipped with this formulation, we go on to establish the well-posedness of entropy solutions to the initial-boundary value problem. The proof utilizes the kinetic formulation and the compensated compactness method. Finally, we make use of these results to demonstrate the well-posedness in a class of discontinuous solutions to the initial-boundary value problem for the Degasperis-Procesi shallow water equation, which is a third order nonlinear dispersive equation that can be rewritten in the form of a nonlinear conservation law with a nonlocal source term.Comment: 24 page

    Convergence of a mixed method for a semi-stationary compressible Stokes system

    Get PDF
    We propose and analyze a finite element method for a semi-stationary Stokes system modeling compressible fluid flow subject to a Navier-slip boundary condition. The velocity (momentum) equation is approximated by a mixed finite element method using the lowest order Nedelec spaces of the first kind. The continuity equation is approximated by a standard piecewise constant upwind discontinuous Galerkin scheme. Our main result states that the numerical method converges to a weak solution. The convergence proof consists of two main steps: (i) To establish strong spatial compactness of the velocity field, which is intricate since the element spaces are only div or curl conforming. (ii) To prove that the discontinuous Galerkin approximations converge strongly, which is required in view of the nonlinear pressure function. Tools involved in the analysis include a higher integrability estimate for the discontinuous Galerkin approximations, a discrete equation for the effective viscous flux, and various renormalized formulations of the discontinuous Galerkin scheme

    Continuous dependence estimates for nonlinear fractional convection-diffusion equations

    Full text link
    We develop a general framework for finding error estimates for convection-diffusion equations with nonlocal, nonlinear, and possibly degenerate diffusion terms. The equations are nonlocal because they involve fractional diffusion operators that are generators of pure jump Levy processes (e.g. the fractional Laplacian). As an application, we derive continuous dependence estimates on the nonlinearities and on the Levy measure of the diffusion term. Estimates of the rates of convergence for general nonlinear nonlocal vanishing viscosity approximations of scalar conservation laws then follow as a corollary. Our results both cover, and extend to new equations, a large part of the known error estimates in the literature.Comment: In this version we have corrected Example 3.4 explaining the link with the results in [51,59
    corecore