46 research outputs found

    Insulin gene regulation and islet development as studied in genetically modified tumors and transgenic laboratory animals

    Get PDF
    The pancreatic islet of Langerhans is composed of four highly distinct cell types specialized to mass produce a particular hormone. Insulin is thus the main product released from the islet B—cell in response to elevated glucose.The four cell types maturate during fetal development. Pluripotent rat islet tumors can to a certain degree undergo similar maturation processes when passaged in vivo. Such a model has been used to study the B—cell specific process of insulin gene activation. Transgenic mice have been instrumental in defining the functional regulatory elements involved in restricting the insulin gene activity to the pancreatic B-cell. The tissue-specific enhancer/promoter has thus been identified and used in combination with a series of other genes which in transgenic mice targets expression of the gene in question selectively to the B-cell. Important transacting factors have been identified and cloned which are in part responsible for mediating tissue specific insulin gene expression. One such factor when "knocked-out" results in a phenotype lacking the entire pancreas. Future developments in targeting "knockout" of genes to particular cell types will help dissecting out the multiple functions of such regulatory transacting factors

    SonoVue® vs. Sonazoid™ vs. Optison™: Which Bubble Is Best for Low-Intensity Sonoporation of Pancreatic Ductal Adenocarcinoma?

    Get PDF
    The use of ultrasound and microbubbles to enhance therapeutic efficacy (sonoporation) has shown great promise in cancer therapy from in vitro to ongoing clinical studies. The fastest bench-to-bedside translation involves the use of ultrasound contrast agents (microbubbles) and clinical diagnostic scanners. Despite substantial research in this field, it is currently not known which of these microbubbles result in the greatest enhancement of therapy within the applied conditions. Three microbubble formulations—SonoVue®, Sonazoid™, and Optison™—were physiochemically and acoustically characterized. The microbubble response to the ultrasound pulses used in vivo was simulated via a Rayleigh–Plesset type equation. The three formulations were compared in vitro for permeabilization efficacy in three different pancreatic cancer cell lines, and in vivo, using an orthotopic pancreatic cancer (PDAC) murine model. The mice were treated using one of the three formulations exposed to ultrasound from a GE Logiq E9 and C1-5 ultrasound transducer. Characterisation of the microbubbles showed a rapid degradation in concentration, shape, and/or size for both SonoVue® and Optison™ within 30 min of reconstitution/opening. Sonazoid™ showed no degradation after 1 h. Attenuation measurements indicated that SonoVue® was the softest bubble followed by Sonazoid™ then Optison™. Sonazoid™ emitted nonlinear ultrasound at the lowest MIs followed by Optison™, then SonoVue®. Simulations indicated that SonoVue® would be the most effective bubble using the evaluated ultrasound conditions. This was verified in the pre-clinical PDAC model demonstrated by improved survival and largest tumor growth inhibition. In vitro results indicated that the best microbubble formulation depends on the ultrasound parameters and concentration used, with SonoVue® being best at lower intensities and Sonazoid™ at higher intensities.publishedVersio
    corecore