6 research outputs found

    Unleashing the power of shark variable single domains (VNARs): broadly neutralizing tools for combating SARS-CoV-2

    Get PDF
    The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a joint global effort to develop vaccines and other treatments that could mitigate the negative effects and the rapid spread of the virus. Single-domain antibodies derived from various sources, including cartilaginous fish, camelids, and humans, have gained attention as promising therapeutic tools against coronavirus disease 2019. Shark-derived variable new antigen receptors (VNARs) have emerged as the smallest naturally occurring antigen-binding molecules. Here, we compile and review recent published studies on VNARs with the capacity to recognize and/or neutralize SARS-CoV-2. We found a close balance between the use of natural immune libraries and synthetic VNAR libraries for the screening against SARS-CoV-2, with phage display being the preferred display technology for the selection of VNARs against this virus. In addition, we discuss potential modifications and engineering strategies employed to improve the neutralization potential of VNARs, such as exploring fusion with the Fc domain of human Immunoglobulin G (IgG) to increase avidity and therapeutic potential. This research highlights the potential of VNARs as powerful molecular tools in the fight against infectious diseases

    Radiaciones ionizantes y su impacto Primer Simposio Internacional sobre Medioambiente (ISE 2017)

    Get PDF
    Son ya varias las décadas en las que en América Latina se ha trabajado arduamente sobre las radiaciones ionizantes; tanto en las ionizantes directas, tales como las partículas beta positivas y negativas, las partículas alfa, los protones, los mesones cargados, los muones y los iones pesados, así como también en las ionizantes indirectas (las producidas por partículas sin cargas), como las generadas por fotones con energías superiores a los 10 keV y los neutrones. Por otro lado, las radiaciones no ionizantes también han sido objeto de detallados estudios, y muy especialmente las provenientes del Sol, como el factor natural más influyente sobre la Tierra. En esta obra se presentan algunos de los avances en los que han participado reconocidos científicos latinoamericanos, como el Dr. Héctor Vega Carrillo, Dr. Daniel Palacios, Dra. Patrizia Pereyra, Dra. Sheila Serrano, y el Dr. Manuel Ernesto Delgado, entre otros. Esta obra puede ser de interés para profesionales del área de la protección radiológica, la ingeniería ambiental, física de la atmósfera y áreas afines, así como para estudiantes

    COVID-19 Neutralizing Antibodies in Breast Milk of Mothers Vaccinated with Three Different Vaccines in Mexico

    No full text
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused the largest pandemic of this century, and all aspects of this virus are being studied. The efforts to mitigate the negative effects associated with the SARS-CoV-2 pandemic have culminated in the development of several vaccines that are effective and safe for use to the general population. However, one aspect that remains relatively underexplored is the efficacy of different vaccines technologies (mRNA and Adenovirus) in providing passive immunity to infants through breastmilk of vaccinated mothers, and whether the antibodies passed through breast milk are functional. In this study, using a Micro-neutralization assay, we evaluate the presence of neutralizing antibodies in breast milk of lactating mothers vaccinated against SARS-CoV-2 with the Pfizer-BioNtech, Johnson & Johnson (J&J)/Janssen, and CanSino Biologics vaccines. Our results show the greatest neutralizing effect in breast milk from mothers vaccinated with Pfizer, followed by mothers vaccinated with J&J. CanSino vaccinations yielded the breast milk with the least neutralizing effects. The results found in this study relating to the neutralizing capacity of breast milk against SARS-CoV-2 highlight the importance of corresponding health authorities recommending vaccination to lactating mothers and of the continuance of breastfeeding to infants due to the potential health benefits

    Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom

    No full text
    Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action

    Wiskott-Aldrich syndrome protein restricts cGAS/STING activation by dsDNA immune complexes

    Get PDF
    International audienceDysregulated sensing of self–nucleic acid is a leading cause of autoimmunity in multifactorial and monogenic diseases. Mutations in Wiskott-Aldrich syndrome protein (WASp), a key regulator of cytoskeletal dynamics in immune cells, cause autoimmune manifestations and increased production of type I IFNs by innate cells. Here we show that immune complexes of self-DNA and autoantibodies (DNA-ICs) contribute to elevated IFN levels via activation of the cGAS/STING pathway of cytosolic sensing. Mechanistically, lack of endosomal F-actin nucleation by WASp caused a delay in endolysosomal maturation and prolonged the transit time of ingested DNA-ICs. Stalling in maturation-defective organelles facilitated leakage of DNA-ICs into the cytosol, promoting activation of the TBK1/STING pathway. Genetic deletion of STING and STING and cGAS chemical inhibitors abolished IFN production and rescued systemic activation of IFN-stimulated genes in vivo. These data unveil the contribution of cytosolic self–nucleic acid sensing in WAS and underscore the importance of WASp-mediated endosomal actin remodeling in preventing innate activation
    corecore