117 research outputs found

    X-ray crystallographic structure of a papain-leupeptin complex

    Get PDF
    AbstractThe three-dimensional structure of the papain-leupeptin complex has been determined by X-ray crystallography to a resolution of 2.1 Å (overall R-factor = 19.8%). The structure indicates that: (i) leupeptin contacts the S subsites of the papain active site and not the S'subsites; (ii) the ‘carbonyl’ carbon atom of the inhibitor is covalently bound by the Cys-25 sulphur atom of papain and is tetrahedrally coordinated; (iii) the ‘carbonyl’ oxygen atom of the inhibitor faces the oxyanion hole and makes hydrogen bond contacts with Gln-19 and Cys-25

    A key region of molecular specificity orchestrates unique ephrin-B1 utilization by Cedar virus

    Get PDF
    The emergent zoonotic henipaviruses, Hendra, and Nipah are responsible for frequent and fatal disease outbreaks in domestic animals and humans. Specificity of henipavirus attachment glycoproteins (G) for highly species-conserved ephrin ligands underpins their broad host range and is associated with systemic and neurological disease pathologies. Here, we demonstrate that Cedar virus (CedV)—a related henipavirus that is ostensibly nonpathogenic—possesses an idiosyncratic entry receptor repertoire that includes the common henipaviral receptor, ephrin-B2, but, distinct from pathogenic henipaviruses, does not include ephrin-B3. Uniquely among known henipaviruses, CedV can use ephrin-B1 for cellular entry. Structural analyses of CedV-G reveal a key region of molecular specificity that directs ephrin-B1 utilization, while preserving a universal mode of ephrin-B2 recognition. The structural and functional insights presented uncover diversity within the known henipavirus receptor repertoire and suggest that only modest structural changes may be required to modulate receptor specificities within this group of lethal human pathogens.Peer reviewe

    Crystallization and preliminary crystallographic analysis of the major capsid proteins VP16 and VP17 of bacteriophage P23-77

    Get PDF
    The major capsid proteins VP16 and VP17 of bacteriophage P23-77 have been crystallized using both recombinant and purified virus and preliminary diffraction analyses have been performed

    Structures of monomeric and oligomeric forms of the Toxoplasma gondiiperforin-like protein 1

    Get PDF
    Toxoplasma and Plasmodium are the parasitic agents of toxoplasmosis and malaria, respectively, and use perforin-like proteins (PLPs) to invade host organisms and complete their life cycles. The Toxoplasma gondii PLP1 (TgPLP1) is required for efficient exit from parasitophorous vacuoles in which proliferation occurs. We report structures of the membrane attack complex/perforin (MACPF) and Apicomplexan PLP C-terminal β-pleated sheet (APCβ) domains of TgPLP1. The MACPF domain forms hexameric assemblies, with ring and helix geometries, and the APCβ domain has a novel β-prism fold joined to the MACPF domain by a short linker. Molecular dynamics simulations suggest that the helical MACPF oligomer preserves a biologically important interface, whereas the APCβ domain binds preferentially through a hydrophobic loop to membrane phosphatidylethanolamine, enhanced by the additional presence of inositol phosphate lipids. This mode of membrane binding is supported by site-directed mutagenesis data from a liposome-based assay. Together, these structural and biophysical findings provide insights into the molecular mechanism of membrane targeting by TgPLP1

    New insights into the enzymatic mechanism of human chitotriosidase (CHIT1) catalytic domain by atomic resolution X-ray diffraction and hybrid QM/MM

    Get PDF
    Chitotriosidase (CHIT1) is a human chitinase belonging to the highly conserved glycosyl hydrolase family 18 (GH18). GH18 enzymes hydrolyze chitin, an N-acetylglucosamine polymer synthesized by lower organisms for structural purposes. Recently, CHIT1 has attracted attention owing to its upregulation in immune-system disorders and as a marker of Gaucher disease. The 39 kDa catalytic domain shows a conserved cluster of three acidic residues, Glu140, Asp138 and Asp136, involved in the hydrolysis reaction. Under an excess concentration of substrate, CHIT1 and other homologues perform an additional activity, transglycosylation. To understand the catalytic mechanism of GH18 chitinases and the dual enzymatic activity, the structure and mechanism of CHIT1 were analyzed in detail. The resolution of the crystals of the catalytic domain was improved from 1.65 Å (PDB entry 1waw ) to 0.95-1.10 Å for the apo and pseudo-apo forms and the complex with chitobiose, allowing the determination of the protonation states within the active site. This information was extended by hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. The results suggest a new mechanism involving changes in the conformation and protonation state of the catalytic triad, as well as a new role for Tyr27, providing new insights into the hydrolysis and transglycosylation activities.Fil: Fadel, Firas. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; FranciaFil: Zhao, Yuguang. University of Oxford; Reino UnidoFil: Cachau, Raul. Frederick National Laboratory for Cancer Research; Estados UnidosFil: Cousido Siah, Alexandra. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; FranciaFil: Ruiz, Francesc X.. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; FranciaFil: Harlos, Karl. University of Oxford; Reino UnidoFil: Howard, Eduardo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; FranciaFil: Mitschler, Andre. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; FranciaFil: Podjarny, Alberto Daniel. Centre National de la Recherche Scientifique; Francia. Institut de Génétique et de Biologie Moléculaire et Cellulaire; Franci

    Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism?

    Get PDF
    Equine rhinitis A virus (ERAV) is closely related to foot-and-mouth disease virus (FMDV), belonging to the genus Aphthovirus of the Picornaviridae. How picornaviruses introduce their RNA genome into the cytoplasm of the host cell to initiate replication is unclear since they have no lipid envelope to facilitate fusion with cellular membranes. It has been thought that the dissociation of the FMDV particle into pentameric subunits at acidic pH is the mechanism for genome release during cell entry, but this raises the problem of how transfer across the endosome membrane of the genome might be facilitated. In contrast, most other picornaviruses form ‘altered’ particle intermediates (not reported for aphthoviruses) thought to induce membrane pores through which the genome can be transferred. Here we show that ERAV, like FMDV, dissociates into pentamers at mildly acidic pH but demonstrate that dissociation is preceded by the transient formation of empty 80S particles which have released their genome and may represent novel biologically relevant intermediates in the aphthovirus cell entry process. The crystal structures of the native ERAV virus and a low pH form have been determined via highly efficient crystallization and data collection strategies, required due to low virus yields. ERAV is closely similar to FMDV for VP2, VP3 and part of VP4 but VP1 diverges, to give a particle with a pitted surface, as seen in cardioviruses. The low pH particle has internal structure consistent with it representing a pre-dissociation cell entry intermediate. These results suggest a unified mechanism of picornavirus cell entry

    New insights into the enzymatic mechanism of human chitotriosidase (CHIT1) catalytic domain by atomic resolution X-ray diffraction and hybrid QM/MM

    Get PDF
    Chitotriosidase (CHIT1) is a human chitinase belonging to the highly conserved glycosyl hydrolase family 18 (GH18). GH18 enzymes hydrolyze chitin, an N-acetylglucosamine polymer synthesized by lower organisms for structural purposes. Recently, CHIT1 has attracted attention owing to its upregulation in immune-system disorders and as a marker of Gaucher disease. The 39 kDa catalytic domain shows a conserved cluster of three acidic residues, Glu140, Asp138 and Asp136, involved in the hydrolysis reaction. Under an excess concentration of substrate, CHIT1 and other homologues perform an additional activity, transglycosylation. To understand the catalytic mechanism of GH18 chitinases and the dual enzymatic activity, the structure and mechanism of CHIT1 were analyzed in detail. The resolution of the crystals of the catalytic domain was improved from 1.65 Å (PDB entry 1waw ) to 0.95-1.10 Å for the apo and pseudo-apo forms and the complex with chitobiose, allowing the determination of the protonation states within the active site. This information was extended by hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. The results suggest a new mechanism involving changes in the conformation and protonation state of the catalytic triad, as well as a new role for Tyr27, providing new insights into the hydrolysis and transglycosylation activities.Instituto de Física de Líquidos y Sistemas Biológico

    T Cell Cross-Reactivity and Conformational Changes during TCR Engagement

    Get PDF
    All thymically selected T cells are inherently cross-reactive, yet many data indicate a fine specificity in antigen recognition, which enables virus escape from immune control by mutation in infections such as the human immunodeficiency virus (HIV). To address this paradox, we analyzed the fine specificity of T cells recognizing a human histocompatibility leukocyte antigen (HLA)-A2–restricted, strongly immunodominant, HIV gag epitope (SLFNTVATL). The majority of 171 variant peptides tested bound HLA-A2, but only one third were recognized. Surprisingly, one recognized variant (SLYNTVATL) showed marked differences in structure when bound to HLA-A2. T cell receptor (TCR) recognition of variants of these two peptides implied that they adopted the same conformation in the TCR–peptide–major histocompatibility complex (MHC) complex. However, the on-rate kinetics of TCR binding were identical, implying that conformational changes at the TCR–peptide–MHC binding interface occur after an initial permissive antigen contact. These findings have implications for the rational design of vaccines targeting viruses with unstable genomes

    Antagonist HIV-1 Gag Peptides Induce Structural Changes in HLA B8

    Get PDF
    In the cellular immune response, recognition by CTL-TCRs of viral antigens presented as peptides by HLA class I molecules, triggers destruction of the virally infected cell (Townsend, A.R.M., J. Rothbard, F.M. Gotch, G. Bahadur, D. Wraith, and A.J. McMichael. 1986. Cell. 44:959–968). Altered peptide ligands (APLs) which antagonise CTL recognition of infected cells have been reported (Jameson, S.C., F.R. Carbone, and M.J. Bevan. 1993. J. Exp. Med. 177:1541–1550). In one example, lysis of antigen presenting cells by CTLs in response to recognition of an HLA B8–restricted HIV-1 P17 (aa 24–31) epitope can be inhibited by naturally occurring variants of this peptide, which act as TCR antagonists (Klenerman, P., S. Rowland Jones, S. McAdam, J. Edwards, S. Daenke, D. Lalloo, B. Koppe, W. Rosenberg, D. Boyd, A. Edwards, P. Giangrande, R.E. Phillips, and A. McMichael. 1994. Nature (Lond.). 369:403– 407). We have characterised two CTL clones and a CTL line whose interactions with these variants of P17 (aa 24–31) exhibit a variety of responses. We have examined the high resolution crystal structures of four of these APLs in complex with HLA B8 to determine alterations in the shape, chemistry, and local flexibility of the TCR binding surface. The variant peptides cause changes in the recognition surface by three mechanisms: changes contributed directly by the peptide, effects transmitted to the exposed peptide surface, and induced effects on the exposed framework of the peptide binding groove. While the first two mechanisms frequently lead to antagonism, the third has more profound effects on TCR recognition

    Benefits of Automated Crystallization Plate Tracking, Imaging, and Analysis

    Get PDF
    SummaryWe describe the design of a database and software for managing and organizing protein crystallization data. We also outline the considerations behind the design of a fast web interface linking protein production data, crystallization images, and automated image analysis. The database and associated interfaces underpin the Oxford Protein Production Facility (OPPF) crystallization laboratory, collecting, in a routine and automatic manner, up to 100,000 images per day. Over 17 million separate images are currently held in this database. We discuss the substantial scientific benefits automated tracking, imaging, and analysis of crystallizations offers to the structural biologist: analysis of the time course of the trial and easy analysis of trials with related crystallization conditions. Features of this system address requirements common to many crystallographic laboratories that are currently setting up (semi-)automated crystallization imaging systems
    • …
    corecore