16,577 research outputs found
Oxidation characteristics of Beta-21S in air in the temperature range 600 to 800 C
The metastable beta-Ti alloy Beta-21S, Ti-15Mo-2.7Nb-3Al-0.2Si (weight percent), has been proposed as a candidate for use in metal matrix composites in future hypersonic vehicles. The present study investigated the oxidation behavior of Beta-21S over the temperature range 600 C to 800 C. Oxidation weight gain was evaluated using thermogravimetric analysis. Oxidized specimens were evaluated using x ray diffraction techniques, scanning electron microscopy, energy dispersive x ray analysis, and electron microprobe analysis to identify oxidation products and evaluate oxidation damage to the alloy
Thermodynamics of nuclei in thermal contact
The behaviour of a di-nuclear system in the regime of strong pairing
correlations is studied with the methods of statistical mechanics. It is shown
that the thermal averaging is strong enough to assure the application of
thermodynamical methods to the energy exchange between the two nuclei in
contact. In particular, thermal averaging justifies the definition of a nuclear
temperature.Comment: 9 pages, 1 figur
Optimal Cosmic-Ray Detection for Nondestructive Read Ramps
Cosmic rays are a known problem in astronomy, causing both loss of data and
data inaccuracy. The problem becomes even more extreme when considering data
from a high-radiation environment, such as in orbit around Earth or outside the
Earth's magnetic field altogether, unprotected, as will be the case for the
James Webb Space Telescope (JWST). For JWST, all the instruments employ
nondestructive readout schemes. The most common of these will be "up the ramp"
sampling, where the detector is read out regularly during the ramp. We study
three methods to correct for cosmic rays in these ramps: a two-point difference
method, a deviation from the fit method, and a y-intercept method. We apply
these methods to simulated nondestructive read ramps with single-sample groups
and varying combinations of flux, number of samples, number of cosmic rays,
cosmic-ray location in the exposure, and cosmic-ray strength. We show that the
y-intercept method is the optimal detection method in the read-noise-dominated
regime, while both the y-intercept method and the two-point difference method
are best in the photon-noise-dominated regime, with the latter requiring fewer
computations.Comment: To be published in PASP. This paper is 12 pages long and includes 15
figure
Unravelling the Mysteries of the Leo Ring: An Absorption Line Study of an Unusual Gas Cloud
Since the 1980's discovery of the large (2x10^9 Msun) intergalactic cloud
known as the Leo Ring, this object has been the center of a lively debate about
its origin. Determining the origin of this object is still important as we
develop a deeper understanding of the accretion and feedback processes that
shape galaxy evolution. We present HST/COS observations of three sightlines
near the Ring, two of which penetrate the high column density neutral hydrogen
gas visible in 21 cm observations of the object. These observations provide the
first direct measurement of the metallicity of the gas in the Ring, an
important clue to its origins. Our best estimate of the metallicity of the ring
is ~10% Zsun, higher than expected for primordial gas but lower than expected
from an interaction. We discuss possible modifications to the interaction and
primordial gas scenarios that would be consistent with this metallicity
measurement.Comment: 11 pages, 7 figures, accepted Ap
Emissions of Volatile Organic Compounds Inferred From Airborne Flux Measurements over a Megacity
Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1&plusmn;4.0 mg/m<sup>2</sup>/h and 4.7&plusmn;2.3 mg/m<sup>2</sup>/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m<sup>2</sup>/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g) including the International airport (e.g. 3–5 g/g) and a mean flux (concentration) ratio of 3.2&plusmn;0.5 g/g (3.9&plusmn;0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH<sub>3</sub>CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%)
Mechanical properties of coated titanium Beta-21S after exposure to air at 700 and 800 C
Mechanical properties of Beta-21S (Ti-15Mo-3Al-2.7Nb-0.2Si, wt percent) with glass, aluminide, and glass-on-aluminide coatings less than 3-micron thick were studied. Coatings were deposited by sol-gel processing or electron-beam evaporation onto 4.5-mil (113-micron) thick Beta-21S sheet from which, after oxidizing in air at 700 or 800 C, tensile test specimens were machined. Plastic elongation was the most severely degraded of the tensile properties; the glass-on-aluminide coatings were the most effective in preventing degradation. It was found that oxygen trapping by forming oxides in the coating, and reactions between the coatings and the Beta-21S alloy played significant roles
Detailed design of a resonantly-enhanced axion-photon regeneration experiment
A resonantly-enhanced photon-regeneration experiment to search for the axion
or axion-like particles is described. This experiment is a shining light
through walls study, where photons travelling through a strong magnetic field
are (in part) converted to axions; the axions can pass through an opaque wall
and convert (in part) back to photons in a second region of strong magnetic
field. The photon regeneration is enhanced by employing matched Fabry-Perot
optical cavities, with one cavity within the axion generation magnet and the
second within the photon regeneration magnet. Compared to simple single-pass
photon regeneration, this technique would result in a gain of (F/pi)^2, where F
is the finesse of each cavity. This gain could feasibly be as high as 10^(10),
corresponding to an improvement in the sensitivity to the axion-photon
coupling, g_(agg), of order (F/pi)^(1/2) ~ 300. This improvement would enable,
for the first time, a purely laboratory experiment to probe axion-photon
couplings at a level competitive with, or superior to, limits from stellar
evolution or solar axion searches. This report gives a detailed discussion of
the scheme for actively controlling the two Fabry-Perot cavities and the laser
frequencies, and describes the heterodyne signal detection system, with limits
ultimately imposed by shot noise.Comment: 10 pages, 5 figure
- …