178 research outputs found

    Estimation of groundwater storage from seismic data using deep learning

    Get PDF
    We investigate the feasibility of the use of convolutional neural networks to estimate the amount of groundwater stored in the aquifer and delineate water-table level from active-source seismic data. The seismic data to train and test the neural networks are obtained by solving wave propagation in a coupled poroviscoelastic-elastic media. A discontinuous Galerkin method is used to model wave propagation whereas a deep convolutional neural network is used for the parameter estimation problem. In the numerical experiment, the primary unknowns, the amount of stored groundwater and water-table level, are estimated, while the remaining parameters, assumed to be of less of interest, are successfully marginalized in the convolutional neural networks-based solution

    Lymphatic vessel density and VEGF-C expression are significantly different among benign and malignant thyroid lesions

    Get PDF
    Thyroid cancer is the most frequent endocrine neoplasia worldwide. The route for metastasis and loco-regional invasion preferentially occurs by lymphatic vessels. For this reason, the assessment of lymphatic vessel density (LVD) is supposed to represent both a prognostic parameter and also a potential therapeutic target. In order to evaluate the value of LVD in benign and malignant thyroid lesions, we analyzed 110 thyroidectomy specimens using D2-40, a specific marker for lymphatic vessels and vascular endothelial growth factor C (VEGF-C), the most potent molecule of lymphatic proliferation. LVD was significantly different between papillary and follicular carcinomas in total (p = 0.045) and peritumoral area (p = 0.042). Follicular adenoma and follicular carcinoma showed an important difference of intra- (p = 0.019) and peritumoral (p = 0.033) LVD. VEGF-C was more markedly expressed in malignancies than in benign lesions (p = 0.0001). Almost all cancers with high positive VEGF-C expression also exhibited increased peritumoral LVD (p = 0.049) when compared with the benign lesions. Indeed, the high peritumoral LVD of malignant thyroid lesions is an important finding for surgery planning and supports the practice of total thyroidectomy in malignant thyroid neoplasm's since the lymphatic peritumoral vessels definitely are an escape path for tumor cells

    Distinct Characteristics of Circulating Vascular Endothelial Growth Factor-A and C Levels in Human Subjects

    Get PDF
    The mechanisms that lead from obesity to atherosclerotic disease are not fully understood. Obesity involves angiogenesis in which vascular endothelial growth factor-A (VEGF-A) plays a key role. On the other hand, vascular endothelial growth factor-C (VEGF-C) plays a pivotal role in lymphangiogenesis. Circulating levels of VEGF-A and VEGF-C are elevated in sera from obese subjects. However, relationships of VEGF-C with atherosclerotic risk factors and atherosclerosis are unknown. We determined circulating levels of VEGF-A and VEGF-C in 423 consecutive subjects not receiving any drugs at the Health Evaluation Center. After adjusting for age and gender, VEGF-A levels were significantly and more strongly correlated with the body mass index (BMI) and waist circumference than VEGF-C. Conversely, VEGF-C levels were significantly and more closely correlated with metabolic (e.g., fasting plasma glucose, hemoglobin A1c, immunoreactive insulin, and the homeostasis model assessment of insulin resistance) and lipid parameters (e.g., triglycerides, total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C), and non-high-density-lipoprotein cholesterol (non-HDL-C)) than VEGF-A. Stepwise regression analyses revealed that independent determinants of VEGF-A were the BMI and age, whereas strong independent determinants of VEGF-C were age, triglycerides, and non-HDL-C. In apolipoprotein E-deficient mice fed a high-fat-diet (HFD) or normal chow (NC) for 16 weeks, levels of VEGF-A were not significantly different between the two groups. However, levels of VEGF-C were significantly higher in HFD mice with advanced atherosclerosis and marked hypercholesterolemia than NC mice. Furthermore, immunohistochemistry revealed that the expression of VEGF-C in atheromatous plaque of the aortic sinus was significantly intensified by feeding HFD compared to NC, while that of VEGF-A was not. In conclusion, these findings demonstrate that VEGF-C, rather than VEGF-A, is closely related to dyslipidemia and atherosclerosis

    Experimental assessment of pro-lymphangiogenic growth factors in the treatment of post-surgical lymphedema following lymphadenectomy

    Get PDF
    Introduction: Lymphedema is a frequent consequence of lymph node excision during breast cancer surgery. Current treatment options are limited mainly to external compression therapies to limit edema development. We investigated previously, postsurgical lymphedema in a sheep model following the removal of a single lymph node and determined that autologous lymph node transplantation has the potential to reduce or prevent edema development. In this report, we examine the potential of lymphangiogenic therapy to restore lymphatic function and reduce postsurgical lymphedema. Methods: Lymphangiogenic growth factors (vascular endothelial growth factor C (VEGF-C)) and angiopoietin-2 (ANG-2) were loaded into a gel-based drug delivery system (HAMC; a blend of hyaluronan and methylcellulose). Drug release rates and lymphangiogenic signaling in target endothelial cells were assessed in vitro and vascular permeability biocompatibility tests were examined in vivo. Following, the removal of a single popliteal lymph node, HAMC with the growth factors was injected into the excision site. Six weeks later, lymphatic functionality was assessed by injecting 125Iodine radiolabeled bovine serum albumin (125I-BSA) into prenodal vessels and measuring its recovery in plasma. Circumferential leg measurements were plotted over time and areas under the curves used to quantify edema formation. Results: The growth factors were released over a two-week period in vitro by diffusion from HAMC, with 50% being released in the first 24 hr. The system induced lymphangiogenic signaling in target endothelial cells, while inducing only a minimal inflammatory response in sheep. Removal of the node significantly reduced lymphatic functionality (nodectomy 1.9 ± 0.9, HAMC alone 1.7 ± 0.8) compared with intact groups (3.2 ± 0.7). In contrast, there was no significant difference between the growth factor treatment group (2.3 ± 0.73) and the intact group indicating improved function with the molecular factors. An increase in the number of regenerated lymphatic vessels at treatment sites was observed with fluoroscopy. Groups receiving HAMC plus growth factors displayed significantly reduced edema (107.4 ± 51.3) compared with nontreated groups (nodectomy 219.8 ± 118.7 and HAMC alone 162.6 ± 141). Conclusions: Growth factor therapy has the potential to increase lymphatic function and reduce edema magnitude in an animal model of lymphedema. The application of this concept to lymphedema patients warrants further examination

    Elevated expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymphangiomas are neoplasias of childhood. Their etiology is unknown and a causal therapy does not exist. The recent discovery of highly specific markers for lymphatic endothelial cells (LECs) has permitted their isolation and characterization, but expression levels and stability of molecular markers on LECs from healthy and lymphangioma tissues have not been studied yet. We addressed this problem by profiling LECs from normal dermis and two children suffering from lymphangioma, and also compared them with blood endothelial cells (BECs) from umbilical vein, aorta and myometrial microvessels.</p> <p>Methods</p> <p>Lymphangioma tissue samples were obtained from two young patients suffering from lymphangioma in the axillary and upper arm region. Initially isolated with anti-CD31 (PECAM-1) antibodies, the cells were separated by FACS sorting and magnetic beads using anti-podoplanin and/or LYVE-1 antibodies. Characterization was performed by FACS analysis, immunofluorescence staining, ELISA and micro-array gene analysis.</p> <p>Results</p> <p>LECs from foreskin and lymphangioma had an almost identical pattern of lymphendothelial markers such as podoplanin, Prox1, reelin, cMaf and integrin-α1 and -α9. However, LYVE-1 was down-regulated and VEGFR-2 and R-3 were up-regulated in lymphangiomas. Prox1 was constantly expressed in LECs but not in any of the BECs.</p> <p>Conclusion</p> <p>LECs from different sources express slightly variable molecular markers, but can always be distinguished from BECs by their Prox1 expression. High levels of VEGFR-3 and -2 seem to contribute to the etiology of lymphangiomas.</p

    Zebrafish prox1b Mutants Develop a Lymphatic Vasculature, and prox1b Does Not Specifically Mark Lymphatic Endothelial Cells

    Get PDF
    Background: The expression of the Prospero homeodomain transcription factor (Prox1) in a subset of cardinal venous cells specifies the lymphatic lineage in mice. Prox1 is also indispensible for the maintenance of lymphatic cell fate, and is therefore considered a master control gene for lymphangiogenesis in mammals. In zebrafish, there are two prox1 paralogues, the previously described prox1 (also known as prox1a) and the newly identified prox1b. Principal Findings: To investigate the role of the prox1b gene in zebrafish lymphangiogenesis, we knocked-down prox1b and found that depletion of prox1b mRNA did not cause lymphatic defects. We also generated two different prox1b mutant alleles, and maternal-zygotic homozygous mutant embryos were viable and did not show any lymphatic defects. Furthermore, the expression of prox1b was not restricted to lymphatic vessels during zebrafish development. Conclusion: We conclude that Prox1b activity is not essential for embryonic lymphatic development in zebrafish

    Characterization of pathogenic germline mutations in human Protein Kinases

    Get PDF
    Background Protein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites.&lt;p&gt;&lt;/p&gt; Results Pathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families.&lt;p&gt;&lt;/p&gt; Conclusions Disease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.&lt;p&gt;&lt;/p&gt

    Zebrafish ProVEGF-C Expression, Proteolytic Processing and Inhibitory Effect of Unprocessed ProVEGF-C during Fin Regeneration

    Get PDF
    BACKGROUND: In zebrafish, vascular endothelial growth factor-C precursor (proVEGF-C) processing occurs within the dibasic motif HSIIRR(214) suggesting the involvement of one or more basic amino acid-specific proprotein convertases (PCs) in this process. In the present study, we examined zebrafish proVEGF-C expression and processing and the effect of unprocessed proVEGF-C on caudal fin regeneration. METHODOLOGY/PRINCIPAL FINDINGS: Cell transfection assays revealed that the cleavage of proVEGF-C, mainly mediated by the proprotein convertases Furin and PC5 and to a less degree by PACE4 and PC7, is abolished by PCs inhibitors or by mutation of its cleavage site (HSIIRR(214) into HSIISS(214)). In vitro, unprocessed proVEGF-C failed to activate its signaling proteins Akt and ERK and to induce cell proliferation. In vivo, following caudal fin amputation, the induction of VEGF-C, Furin and PC5 expression occurs as early as 2 days post-amputation (dpa) with a maximum levels at 4-7 dpa. Using immunofluorescence staining we localized high expression of VEGF-C and the convertases Furin and PC5 surrounding the apical growth zone of the regenerating fin. While expression of wild-type proVEGF-C in this area had no effect, unprocessed proVEGF-C inhibited fin regeneration. CONCLUSIONS/SIGNIFICANCES: Taken together, these data indicate that zebrafish fin regeneration is associated with up-regulation of VEGF-C and the convertases Furin and PC5 and highlight the inhibitory effect of unprocessed proVEGF-C on fin regeneration

    Worsening of Cardiomyopathy Using Deflazacort in an Animal Model Rescued by Gene Therapy

    Get PDF
    We have previously demonstrated that gene therapy can rescue the phenotype and extend lifespan in the delta-sarcoglycan deficient cardiomyopathic hamster. In patients with similar genetic defects, steroids have been largely used to slow down disease progression. Aim of our study was to evaluate the combined effects of steroid treatment and gene therapy on cardiac function. We injected the human delta-sarcoglycan cDNA by adeno-associated virus (AAV) 2/8 by a single intraperitoneal injection into BIO14.6 Syrian hamsters at ten days of age to rescue the phenotype. We then treated the hamsters with deflazacort. Treatment was administered to half of the hamsters that had received the AAV and the other hamsters without AAV, as well as to normal hamsters. Both horizontal and vertical activities were greatly enhanced by deflazacort in all groups. As in previous experiments, the AAV treatment alone was able to preserve the ejection fraction (70±7% EF). However, the EF value declined (52±14%) with a combination of AAV and deflazacort. This was similar with all the other groups of affected animals. We confirm that gene therapy improves cardiac function in the BIO14.6 hamsters. Our results suggest that deflazacort is ineffective and may also have a negative impact on the cardiomyopathy rescue, possibly by boosting motor activity. This is unexpected and may have significance in terms of the lifestyle recommendations for patients
    corecore