31 research outputs found

    Homogeneously Bright, Flexible, and Foldable Lighting Devices with Functionalized Graphene Electrodes.

    Get PDF
    Alternating current electroluminescent technology allows the fabrication of large area, flat and flexible lights. Presently the maximum size of a continuous panel is limited by the high resistivity of available transparent electrode materials causing a visible gradient of brightness. Here, we demonstrate that the use of the best known transparent conductor FeCl3-intercalated few-layer graphene boosts the brightness of electroluminescent devices by 49% compared to pristine graphene. Intensity gradients observed for high aspect ratio devices are undetectable when using these highly conductive electrodes. Flat lights on polymer substrates are found to be resilient to repeated and flexural strains.S. Russo and M.F. Craciun acknoweldge financial support from EPSRC (Grant no. EP/J000396/1, EP/K017160/1, EP/K010050/1, EPG036101/1, EP/M001024/1, EPM002438/1) and from the Leverhulme Trust (Research grant title Quantum Drums)

    Biomarkers of collagen synthesis predict progression in the PROFILE idiopathic pulmonary fibrosis cohort.

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is characterised by excessive extracellular matrix (ECM) deposition and remodelling. Measuring this activity provides an opportunity to develop tools capable of identifying individuals at-risk of progression. Longitudinal change in markers of ECM synthesis was assessed in 145 newly-diagnosed individuals with IPF. Serum levels of collagen synthesis neoepitopes, PRO-C3 and PRO-C6 (collagen type 3 and 6), were elevated in IPF compared with controls at baseline, and progressive disease versus stable disease during follow up, (PRO-C3 p  0 vs. LOW slope, slope < =0) demonstrated no relationship with mortality for these markers (PRO-C3 (HR 1.62, p = 0.080); PINP (HR 0.76, p = 0.309); PRO-C6 (HR 1.14, p = 0.628)). As previously reported, rising concentrations of collagen degradation markers C1M, C3M, C6M and CRPM were associated with an increased risk of overall mortality (HR = 1.84, CI 1.03–3.27, p = 0.038, HR = 2.44, CI 1.39–4.31, p = 0.002; HR = 2.19, CI 1.25–3.82, p = 0.006; HR = 2.13 CI 1.21–3.75, p = 0.009 respectively). Elevated levels of PRO-C3 and PRO-C6 associate with IPF disease progression. Collagen synthesis and degradation biomarkers have the potential to enhance clinical trials in IPF and may inform prognostic assessment and therapeutic decision making in the clinic

    Rare variants in NR2F2 cause congenital heart defects in humans

    Get PDF
    Congenital heart defects (CHDs) are the most common birth defect worldwide and are a leading cause of neonatal mortality. Nonsyndromic atrioventricular septal defects (AVSDs) are an important subtype of CHDs for which the genetic architecture is poorly understood. We performed exome sequencing in 13 parent-offspring trios and 112 unrelated individuals with nonsyndromic AVSDs and identified five rare missense variants (two of which arose de novo) in the highly conserved gene NR2F2, a very significant enrichment (p = 7.7 × 10?7) compared to 5,194 control subjects. We identified three additional CHD-affected families with other variants in NR2F2 including a de novo balanced chromosomal translocation, a de novo substitution disrupting a splice donor site, and a 3 bp duplication that cosegregated in a multiplex family. NR2F2 encodes a pleiotropic developmental transcription factor, and decreased dosage of NR2F2 in mice has been shown to result in abnormal development of atrioventricular septa. Via luciferase assays, we showed that all six coding sequence variants observed in individuals significantly alter the activity of NR2F2 on target promoters

    Of mice and men: molecular genetics of congenital heart disease

    Get PDF

    African-American esophageal squamous cell carcinoma expression profile reveals dysregulation of stress response and detox networks

    No full text
    Abstract Background Esophageal carcinoma is the third most common gastrointestinal malignancy worldwide and is largely unresponsive to therapy. African-Americans have an increased risk for esophageal squamous cell carcinoma (ESCC), the subtype that shows marked variation in geographic frequency. The molecular architecture of African-American ESCC is still poorly understood. It is unclear why African-American ESCC is more aggressive and the survival rate in these patients is worse than those of other ethnic groups. Methods To begin to define genetic alterations that occur in African-American ESCC we conducted microarray expression profiling in pairs of esophageal squamous cell tumors and matched control tissues. Results We found significant dysregulation of genes encoding drug-metabolizing enzymes and stress response components of the NRF2- mediated oxidative damage pathway, potentially representing key genes in African-American esophageal squamous carcinogenesis. Loss of activity of drug metabolizing enzymes would confer increased sensitivity of esophageal cells to xenobiotics, such as alcohol and tobacco smoke, and may account for the high incidence and aggressiveness of ESCC in this ethnic group. To determine whether certain genes are uniquely altered in African-American ESCC we performed a meta-analysis of ESCC expression profiles in our African-American samples and those of several Asian samples. Down-regulation of TP53 pathway components represented the most common feature in ESCC of all ethnic groups. Importantly, this analysis revealed a potential distinctive molecular underpinning of African-American ESCC, that is, a widespread and prominent involvement of the NRF2 pathway. Conclusion Taken together, these findings highlight the remarkable interplay of genetic and environmental factors in the pathogenesis of African-American ESCC

    Cassiar Courier - April 1981

    Get PDF
    BACKGROUND: Esophageal carcinoma is the third most common gastrointestinal malignancy worldwide and is largely unresponsive to therapy. African-Americans have an increased risk for esophageal squamous cell carcinoma (ESCC), the subtype that shows marked variation in geographic frequency. The molecular architecture of African-American ESCC is still poorly understood. It is unclear why African-American ESCC is more aggressive and the survival rate in these patients is worse than those of other ethnic groups. METHODS: To begin to define genetic alterations that occur in African-American ESCC we conducted microarray expression profiling in pairs of esophageal squamous cell tumors and matched control tissues. RESULTS: We found significant dysregulation of genes encoding drug-metabolizing enzymes and stress response components of the NRF2- mediated oxidative damage pathway, potentially representing key genes in African-American esophageal squamous carcinogenesis. Loss of activity of drug metabolizing enzymes would confer increased sensitivity of esophageal cells to xenobiotics, such as alcohol and tobacco smoke, and may account for the high incidence and aggressiveness of ESCC in this ethnic group. To determine whether certain genes are uniquely altered in African-American ESCC we performed a meta-analysis of ESCC expression profiles in our African-American samples and those of several Asian samples. Down-regulation of TP53 pathway components represented the most common feature in ESCC of all ethnic groups. Importantly, this analysis revealed a potential distinctive molecular underpinning of African-American ESCC, that is, a widespread and prominent involvement of the NRF2 pathway. CONCLUSION: Taken together, these findings highlight the remarkable interplay of genetic and environmental factors in the pathogenesis of African-American ESCC

    CYFRA 21-1 predicts progression in IPF: a prospective longitudinal analysis of the PROFILE cohort.

    No full text
    OBJECTIVES: Idiopathic pulmonary fibrosis (IPF) is a progressive and inevitably fatal condition for which there are a lack of effective biomarkers to guide therapeutic decision making. RATIONALE: To determine the relationship between serum levels of the cytokeratin fragment CYFRA 21-1 and disease progression and mortality in individuals with IPF enrolled in the PROFILE study. METHODS: CYFRA 21-1 was identified by immunohistochemistry in samples of human lung. Concentrations of CYFRA 21-1 were measured using an Elisa-based assay in serum, collected at baseline, 1- and 3-months, from 491 individuals with an incident diagnosis of IPF enrolled in the PROFILE study and from 100 control subjects. Study subjects were followed for a minimum of 3 years. MEASUREMENTS AND MAIN RESULTS: CYFRA 21-1 localises to hyperplastic epithelium in IPF lung. CYFRA 21-1 levels were significantly higher in IPF subjects compared to healthy controls in both discovery (n=132) (control 0.96±0.81 ng/mL versus IPF; 2.34±2.15 ng/mL, p < 0.0001) and validation (n=359) (control; 2.21±1.54 ng/mL and IPF; 4.13±2.77 ng/mL, p<0.0001) cohorts. Baseline levels of CYFRA 21-1 distinguished individuals at risk of 12-month disease progression (C-statistic 0.70 (95% CI 0.61-0.79), p < 0.0001) and were predictive of overall-mortality (HR 1.12 (1.06-1.19) per 1 ng/mL increase in CYFRA 21-1, p=0.0001). Furthermore, 3-month change in levels of CYFRA 21-1 separately predicted 12-month and overall survival in both the discovery and validation cohorts. CONCLUSIONS: CYFRA 21-1, a marker of epithelial damage and turnover, has the potential to be an important prognostic and therapeutic biomarker in individuals with IPF
    corecore