31 research outputs found

    Effector Functions of CD4+ T Cells at the Site of Local Autoimmune Inflammation—Lessons From Rheumatoid Arthritis

    Get PDF
    Infiltration of memory CD4+ T cells in synovial joints of Rheumatoid Arthritis (RA) patients has been reported since decades. Moreover, several genome wide association studies (GWAS) pinpointing a key genetic association between the HLA-DR locus and RA have led to the generally agreed hypothesis that CD4+ T cells are directly implicated in the disease. Still, RA is a heterogeneous disease and much effort has been made to understand its different facets. T cell differentiation is driven by mechanisms including antigen stimulation, co-stimulatory signals and cytokine milieu, all of which are abundant in the rheumatic joint, implying that any T cells migrating into the joint may be further affected locally. In parallel to the characterization and classification of T-cell subsets, the contribution of different effector T cells to RA has been investigated in numerous studies though sometimes with contradictory results. In particular, the frequency of Th1 and Th17 cells has been assessed in the synovial joints with various results that could, at least partly, be explained by the stage of the disease. For regulatory T cells, it is largely accepted that they accumulate in RA synovial fluid and that the equilibrium between regulatory T cells and effector cells is a key factor in controlling inflammation processes involved in RA. Recent phenotypic studies describe the possible implication of a novel subset of peripheral T helper cells (Tph) important for T-B cell cross talk and plasma cell differentiation in the RA joint of ACPA+ (autoantibodies against citrullinated proteins) RA patients. Finally, cytotoxic CD4+ T cells, historically described as increased in the peripheral blood of RA patients have attracted new attention in the last years. In view of the recently identified peripheral T-cell subsets, we will integrate immunological data as well as information on genetic variants and therapeutic strategy outcomes into our current understanding of the width of effector T cells. We will also integrate tissue-resident memory T cell aspects, and discuss similarities and differences with inflammatory conditions in skin (psoriasis) and mucosal organs (Crohn's disease)

    Type I interferon dependence of plasmacytoid dendritic cell activation and migration

    Get PDF
    Differential expression of Toll-like receptor (TLR) by conventional dendritic cells (cDCs) and plasmacytoid DC (pDCs) has been suggested to influence the type of immune response induced by microbial pathogens. In this study we show that, in vivo, cDCs and pDCs are equally activated by TLR4, -7, and -9 ligands. Type I interferon (IFN) was important for pDC activation in vivo in response to all three TLR ligands, whereas cDCs required type I IFN signaling only for TLR9- and partially for TLR7-mediated activation. Although TLR ligands induced in situ migration of spleen cDC into the T cell area, spleen pDCs formed clusters in the marginal zone and in the outer T cell area 6 h after injection of TLR9 and TLR7 ligands, respectively. In vivo treatment with TLR9 ligands decreased pDC ability to migrate ex vivo in response to IFN-induced CXCR3 ligands and increased their response to CCR7 ligands. Unlike cDCs, the migration pattern of pDCs required type I IFN for induction of CXCR3 ligands and responsiveness to CCR7 ligands. These data demonstrate that mouse pDCs differ from cDCs in the in vivo response to TLR ligands, in terms of pattern and type I IFN requirement for activation and migration

    The Ets-1 transcription factor controls the development and function of natural regulatory T cells

    Get PDF
    Regulatory T cells (T reg cells) constitute a population of CD4+ T cells that limits immune responses. The transcription factor Foxp3 is important for determining the development and function of T reg cells; however, the molecular mechanisms that trigger and maintain its expression remain incompletely understood. In this study, we show that mice deficient for the Ets-1 transcription factor (Ets-1−/−) developed T cell–mediated splenomegaly and systemic autoimmunity that can be blocked by functional wild-type T reg cells. Spleens of Ets-1−/− mice contained mostly activated T cells, including Th2-polarized CD4+ cells and had reduced percentages of T reg cells. Splenic and thymic Ets-1−/− T reg cells expressed low levels of Foxp3 and displayed the CD103 marker that characterizes antigen-experienced T reg cells. Thymic development of Ets-1−/− T reg cells appeared intrinsically altered as Foxp3-expressing cells differentiate poorly in mixed fetal liver reconstituted chimera and fetal thymic organ culture. Ets-1−/− T reg cells showed decreased in vitro suppression activity and did not protect Rag2−/− hosts from naive T cell–induced inflammatory bowel disease. Furthermore, in T reg cells, Ets-1 interacted with the Foxp3 intronic enhancer and was required for demethylation of this regulatory sequence. These data demonstrate that Ets-1 is required for the development of natural T reg cells and suggest a role for this transcription factor in the regulation of Foxp3 expression

    Force Generation upon T Cell Receptor Engagement

    Get PDF
    T cells are major players of adaptive immune response in mammals. Recognition of an antigenic peptide in association with the major histocompatibility complex at the surface of an antigen presenting cell (APC) is a specific and sensitive process whose mechanism is not fully understood. The potential contribution of mechanical forces in the T cell activation process is increasingly debated, although these forces are scarcely defined and hold only limited experimental evidence. In this work, we have implemented a biomembrane force probe (BFP) setup and a model APC to explore the nature and the characteristics of the mechanical forces potentially generated upon engagement of the T cell receptor (TCR) and/or lymphocyte function-associated antigen-1 (LFA-1). We show that upon contact with a model APC coated with antibodies towards TCR-CD3, after a short latency, the T cell developed a timed sequence of pushing and pulling forces against its target. These processes were defined by their initial constant growth velocity and loading rate (force increase per unit of time). LFA-1 engagement together with TCR-CD3 reduced the growing speed during the pushing phase without triggering the same mechanical behavior when engaged alone. Intracellular Ca2+ concentration ([Ca2+]i) was monitored simultaneously to verify the cell commitment in the activation process. [Ca2+]i increased a few tens of seconds after the beginning of the pushing phase although no strong correlation appeared between the two events. The pushing phase was driven by actin polymerization. Tuning the BFP mechanical properties, we could show that the loading rate during the pulling phase increased with the target stiffness. This indicated that a mechanosensing mechanism is implemented in the early steps of the activation process. We provide here the first quantified description of force generation sequence upon local bidimensional engagement of TCR-CD3 and discuss its potential role in a T cell mechanically-regulated activation process

    Etude du rôle du facteur de transcription Ets-1 dans la différenciation lymphoïde T et B

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF
    corecore