39 research outputs found

    Forecasting linear aliphatic copolyester degradation through modular block design

    Get PDF
    AbstractThe development of efficient methods to predict the degradation of renewable polymeric materials is continuously sought in the field of polymer science. Herein, we present a modular build-up approach to create polyester-based materials with forecasted degradation rates based on the hydrolysis of the constituent polymer blocks. This involved the strategic combination of critical factors affecting polyester hydrolysis, i.e. hydrophobicity and degree of crystallinity. The starting point of this method was a toolbox of polymers with different hydrophobicities and degrees of crystallinity, as well as an understanding of their inherent differences in hydrolysis rate. Knowledge of the hydrolysis of each polymer block module enabled the prediction of the overall degradation behavior of the constructed copolymers. Taking advantage of the primary factors that affect polymer degradation, block copolymers could be independently designed to incorporate soft or rigid and faster or slower degradation properties. This approach generated a shift for how molecular design can be used to predict the degradation behavior of intended materials for different applications

    Design of polyester and porous scaffolds

    No full text
    The use of synthetic materials for tissue and organ reconstruction, i. e. tissue engineering, has become a promising alternative to current surgical therapies and may overcome the shortcomings of the methods in use today. The challenge is in the design and reproducible fabrication of biocompatible and bioresorbable polymers, with suitable surface chemistry, desirable mechanical properties, and the wanted degradation profile. These material properties can be achieved in various manners, including the synthesis of homo- and copolymers along with linear and star-shaped architectures. In many applications the materials’ three-dimensional structure is almost as important as its composition and porous scaffolds with high porosity and interconnected pores that facilitate the in-growth of cells and transportation of nutrients and metabolic waste is desired. In this work linear and star-shaped polymers have been synthesized by ring-opening polymerization using a stannous-based catalyst and a spirocyclic tin initiator. A series of linear copolymers with various combinations of 1,5-dioxepane-2-one (DXO), Llactide (LLA) and ε-caprolactone (CL) have been polymerized using stannous octoate as catalyst. It is shown that the composition of the polymers can be chosen in such a manner that the materials’ mechanical and thermal properties can be predetermined. A solvent-casting and particulate leaching scaffold preparation technique has been developed and used to create three-dimensional structures with interconnected pores. The achieved physical properties of these materials’ should facilitate their use in both soft and hard tissue regeneration. Well defined star-shaped polyesters have been synthesized using a spirocyclic tin initiator where L-lactide was chosen as a model system for the investigation of the polymerization kinetics. Neither the temperature nor the solvent affects the molecular weight or the molecular weight distribution of the star-shaped polymers, which all show a molecular weight distribution below 1.19 and a molecular weight determined by the initial monomer-to-initiator concentration.QC 2010121

    Dual-Functioning Antibacterial Eugenol-Derived Plasticizers for Polylactide

    No full text
    Dual-functioning additives with plasticizing and antibacterial functions were designed by exploiting the natural aromatic compound eugenol and green platform chemical levulinic acid or valeric acid that can be produced from biobased resources. One-pot synthesis methodology was utilized to create three ester-rich plasticizers. The plasticizers were thoroughly characterized by several nuclear magnetic resonance techniques (1H NMR, 13C NMR, 31P NMR, HSQC, COSY, HMBC) and by electrospray ionization-mass spectrometry (ESI-MS) and their performances, as plasticizers for polylactide (PLA), were evaluated. The eugenyl valerate was equipped with a strong capability to depress the glass transition temperature (Tg) of PLA. Incorporating 30 wt% plasticizer led to a reduction of the Tg by 43 °C. This was also reflected by a remarkable change in mechanical properties, illustrated by a strain at break of 560%, almost 110 times the strain for the breaking of neat PLA. The two eugenyl levulinates also led to PLA with significantly increased strain at breaking. The eugenyl levulinates portrayed higher thermal stabilities than eugenyl valerate, both neat and in PLA blends. The different concentrations of phenol, carboxyl and alcohol functional groups in the three plasticizers caused different bactericidal activities. The eugenyl levulinate with the highest phenol-, carboxyl- and alcohol group content significantly inhibited the growth of Staphylococcus aureus and Escherichia coli, while the other two plasticizers could only inhibit the growth of Staphylococcus aureus. Thus, the utilization of eugenol as a building block in plasticizer design for PLA illustrated an interesting potential for production of additives with dual functions, being both plasticizers and antibacterial agents

    Tunable polylactide plasticizer design: Rigid stereoisomers

    No full text
    Two isomeric molecules, 1,2-cyclohexanediol and isohexide (isosorbide and isomannide) demonstrated potential as rigid building blocks in PLA plasticizer design with tunable material performances. Six plasticizer candidates were synthesized via Fischer esterification in bulk of the rigid isomeric cores and green platform chemicals levulinic acid and valeric acid. The structures were confirmed by 1H NMR and ESI-MS. Based on the calculated Hansen solubility parameters, all the synthesized plasticizer candidates were expected to be miscible with PLA, which was experimentally proven by a significant decrease of glass transition temperature (Tg) and an increase in strain at break. For instance, PLA plasticized with 20 wt% cyclohexanediol levulinate (cis- and trans- mixture) portrayed the lowest Tg of 25 °C and the highest strain at break of 265%, which equals to 44 times of the initial strain at break of neat PLA. Isohexide-based plasticizers with larger rigid cores, isosorbide levulinate and isomannide levulinate enabled superior thermal stability, higher Young’s modulus and stress at break in PLA blends compared with cyclohexanediol-based plasticizers, while retaining high strain at break. Stronger influence of stereoisomerism on plasticization was also observed in PLA blends with isohexide-based plasticizers compared with cyclohexanediol-based plasticizers. Here we present a new pathway to tailor the performance of plasticizer by utilizing isomeric rigid building blocks.QC 20211005</p

    Superiorly Plasticized PVC/PBSA Blends through Crotonic and Acrylic Acid Functionalization of PVC

    No full text
    Superior plasticization efficiency was achieved by a grafting from functionalization of the PVC backbone. This was deduced to a synergistic effect of internal plasticization and improved intermolecular interactions between PVC and an oligomeric poly(butylene succinate-co-adipate) (PBSA) plasticizer. A mild grafting process for functionalization of the PVC chain by crotonic acid (CA) or acrylic acid (AA) was used. The formation of PVC-g-CA and PVC-g-AA was confirmed by FTIR and 1H NMR. Grafting with the seemingly similar monomers, CA and AA, resulted in different macromolecular structures. AA is easily homopolymerized and long hydrophilic poly(acrylic acid) grafts are formed resulting in branched materials. Crotonic acid does not easily homopolymerize; instead, single crotonic acid units are located along the PVC chain, leading to basically linear PVC chains with pendant crotonic acid groups. The elongation of PVC-g-CA and PVC-g-AA in comparison to pure PVC were greatly increased from 6% to 128% and 167%, respectively, by the grafting reactions. Blending 20% (w/w) PBSA with PVC, PVC-AA or PVC-CA further increased the elongation at break to 150%, 240% and 320%, respectively, clearly showing a significant synergistic effect in the blends with functionalized PVC. This is a clearly promising milestone towards environmentally friendly flexible PVC materials

    Carbonized lignosulfonate-based porous nanocomposites for adsorption of environmental contaminants

    No full text
    Carbon-based adsorbents possess exceptional adsorption capability, making them an ideal platform for the remediation of environmental contaminants. Here, we demonstrate carbonized lignosulfonate (LS)-based porous nanocomposites with excellent adsorption performance towards heavy metal ions and cationic dye pollutants. Through microwave-assisted hydrothermal carbonization, a green approach was employed to carbonize lignosulfonate to carbon spheres. The LS-derived carbon spheres were then oxidized into nanographene oxide (nGO) carbon dots. A facile two-step procedure that involved the self-assembly of nGO and gelatin into a hydrogel precursor coupled with freeze-drying enabled the construction of three-dimensional (3D) free-standing porous composites without the use of organic solvents or chemical crosslinking agents. The favorable pore structure and abundance of surface functional groups on the nGO/gelatin porous composite proved to substantially facilitate the adsorption of Cu(II) in comparison to conventionally-used activated carbon. Further enhancement of adsorption performance was achieved by introducing additional surface functional groups through a non-covalent functionalization of the porous composite with lignosulfonate. The presence of negatively-charged sulfonate groups increased the Cu(II) equilibrium adsorption capacity (66 mg/g) by 24% in comparison to the non-functionalized nGO/gelatin counterpart. Both functionalized and non-functionalized composites exhibited significantly faster adsorption rates (40 min) compared to many graphene- or GO-based adsorbents reported in literature. In addition to the adsorption of heavy metal ions, the composites also demonstrated good adsorption capacity towards cationic dyes such as methylene blue. This paves the way for a high value-added application of lignin in environmental remediation and opens up new possibilities for the development of sustainable materials for adsorption and water purification.QC 20200917</p

    From Food Additive to High-Performance Heavy Metal Adsorbent: A Versatile and Well-Tuned Design

    No full text
    A biosourced, cross-linked hydrogel-type heavy metal adsorbent is presented. Various factors such as the highly efficient chemical interactions, the various network structures, the decreased energy consumption during cross-linking, and the negligible amount of generated waste are considered when designing the adsorbent. The widely applied, naturally occurring food additive δ-gluconolactone is studied as a building block for the adsorbent. Aminolysis reactions were applied to form linear dimer precursors between diamines and δ-gluconolactones. The abundant hydroxyl groups on the dimers from δ-gluconolactone were fully exploited by using them as the cross-linking sites for reactions with ethylenediaminetetraacetic dianhydride, a well-known metal-chelating moiety. The versatility of the adsorbent and its metal-ion binding capacity is well tuned using dimers with different structures and by controlling the feed ratios of the precursors. Buffers with different pH values were used as the conditioning media to examine the swelling properties and the mechanical properties of the hydrogels, revealing that both properties can be controlled. High heavy metal chelating performance of the adsorbent was determined by isothermal adsorption kinetics, titration, and thermal gravimetric analysis. The adsorbent exhibits an outstanding chelating ability toward the three tested heavy metals (Cu­(II), Co­(II), Ni­(II)), and the maximum adsorption capacity (<i>q</i><sub>m</sub> ∼ 121 mg·g<sup>–1</sup>) is higher than that of the majority of the reported biosourced adsorbents

    Exploiting Ring-Opening Aminolysis–Condensation as a Polymerization Pathway to Structurally Diverse Biobased Polyamides

    No full text
    A pathway to biobased polyamides (PAs) via ring-opening aminolysis–condensation (ROAC) under benign conditions with diverse structure was designed. Ethylene brassylate (EB), a plant oil-derived cyclic dilactone, was used in combination with an array of diamines of diverse chemical structure, and ring-opening of the cyclic dilactone EB was revealed as a driving force for the reaction. The ROAC reactions were adjusted, and reaction conditions of 100 °C under atmospheric pressure using 1,5,7-triazabicyclo[4.4.0]­dec-5-ene (TBD) as a catalyst for 24 h were optimal. The structures of the polyamides were confirmed by mass spectroscopy, FTIR, and NMR, and the PAs had viscosity average molecular weights (<i>M</i><sub>η</sub>) of ∼5–8 kDa. Glassy or semicrystalline PAs with glass transition temperatures between 48 and 55 °C, melting temperatures of 120–200 °C for the semicrystalline PAs, and thermal stabilities above 400 °C were obtained and were comparable to the existing PAs with similar structures. As a proof-of-concept of their usage, one of the PAs was shown to form fibers by electrospinning and films by melt pressing. Compared to conventional methods for PA synthesis, the ROAC route portrayed a reaction temperature at least 60–80 °C lower, could be readily carried out without a low-pressure environment, and eliminated the use of solvents and toxic chemicals. Together with the plant oil-derived monomer (EB), the ROAC route provided a sustainable alternative to design biobased PAs

    Poly(lactide)-g-poly(butylene succinate-co-adipate) with High Crystallization Capacity and Migration Resistance

    No full text
    Plasticized polylactide (PLA) with increased crystallization ability and prolonged life-span in practical applications due to the minimal plasticizer migration was prepared. Branched plasticized PLA was successfully obtained by coupling poly(butylene succinate-co-adipate) (PBSA) to crotonic acid (CA) functionalized PLA. The plasticization behavior of PBSA coupled PLA (PLA-CA-PBSA) and its counterpart PBSA blended PLA (PLA/PBSA) were fully elucidated. For both PLA-CA-PBSA and PLA/PBSA, a decrease of Tg to around room temperature and an increase in the elongation at break of PLA from 14% to 165% and 460%, respectively, were determined. The crystallinity was increased from 2.1% to 8.4% for PLA/PBSA and even more, to 10.6%, for PLA-CA-PBSA. Due to the inherent poor miscibility between the PBSA and PLA, phase separation occurred in the blend, while PLA-CA-PBSA showed no phase separation which, together with the higher crystallinity, led to better oxygen barrier properties compared to neat PLA and PLA/PBSA. A higher resistance to migration during hydrolytic degradation for the PLA-CA-PBSA compared to the PLA/PBSA indicated that the plasticization effect of PBSA in the coupled material would be retained for a longer time period
    corecore