58 research outputs found

    Genetically encodable fluorescent protein markers in advanced optical imaging

    Get PDF
    Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions

    Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights

    Get PDF
    Although a wide variety of nanoparticles (NPs) have been engineered for use as disease markers or drug delivery agents, the number of nanomedicines in clinical use has hitherto remained small. A key obstacle in nanomedicine development is the lack of a deep mechanistic understanding of NP interactions in the bio-environment. Here, the focus is on the biomolecular adsorption layer (protein corona), which quickly enshrouds a pristine NP exposed to a biofluid and modifies the way the NP interacts with the bio-environment. After a brief introduction of NPs for nanomedicine, proteins, and their mutual interactions, research aimed at addressing fundamental properties of the protein corona, specifically its mono-/multilayer structure, reversibility and irreversibility, time dependence, as well as its role in NP agglomeration, is critically reviewed. It becomes quite evident that the knowledge of the protein corona is still fragmented, and conflicting results on fundamental issues call for further mechanistic studies. The article concludes with a discussion of future research directions that should be taken to advance the understanding of the protein corona around NPs. This knowledge will provide NP developers with the predictive power to account for these interactions in the design of efficacious nanomedicines

    Co and No Binding in Inducible Nitric Oxide Synthase

    Get PDF

    Highly Luminescent Positively Charged Quantum Dots Interacting with Proteins and Cells

    Get PDF
    We have studied interactions between positively charged MUTAB-stabilized quantum dots (QDs) and model proteins, serum and live cells using fluorescence correlation spectroscopy (FCS), dynamic light scattering (DLS), time-resolved photoluminescence (PL) and live-cell fluorescence imaging. Using human serum albumin (HSA) as a model protein, we measured the growth of a protein adsorption layer (“protein corona”) via time-resolved FCS. Corona formation was characterized by an apparent equilibrium dissociation coefficient, KD_{D} ≈ 10 ÎŒM. HSA adlayer growth was surprisingly slow (timescale ca. 30 min), in stark contrast to many similar measurements with HSA and other proteins and different NPs. Time-resolved PL data revealed a characteristic quenching behavior depending on the QD surface coverage with HSA. Taken together, we found that MUTAB-QDs initially bind HSA molecules weakly (KD_{D} ≈ 700 ÎŒM); however, the affinity is enhanced over time, presumably due to proton injection into the MUTAB layer by HSA triggering ligand dissociation. This process was also observed with human blood serum, showing equal kinetics for comparable HSA concentration. Moreover, imaging experiments with cultured human cells (HeLa) revealed that MUTAB-QDs bind to the cell membrane and perforate it. This process is reduced upon pre-adsorption of proteins on the MUTAB-QD surfaces

    Physicians' working conditions and job satisfaction : does hospital ownership in Germany make a difference?

    Get PDF
    Background: A growing number of German hospitals have been privatized with the intention of increasing cost effectiveness and improving the quality of health care. Numerous studies investigated what possible qualitative and economic consequences these changes issues might have on patient care. However, little is known about how this privatization trend relates to physicians' working conditions and job satisfaction. It was anticipated that different working conditions would be associated with different types of hospital ownership. To that end, this study's purpose is to compare how physicians, working for both public and privatized hospitals, rate their respective psychosocial working conditions and job satisfaction. Methods: The study was designed as a cross-sectional comparison using questionnaire data from 203 physicians working at German hospitals of different ownership types (private for-profit, public and private nonprofit). Results: The present study shows that several aspects of physicians' perceived working conditions differ significantly depending on hospital ownership. However, results also indicated that physicians' job satisfaction does not vary between different types of hospital ownership. Finally, it was demonstrated that job demands and resources are associated with job satisfaction, while type of ownership is not. Conclusion: This study represents one of a few studies that investigate the effect of hospital ownership on physicians work situation and demonstrated that the type of ownership is a potential factor accounting for differences in working conditions. The findings provide an informative basis to find solutions improving physicians' work at German hospitals

    Exploring the energy landscape of a SAM-I riboswitch

    Get PDF
    SAM-I riboswitches regulate gene expression through transcription termination upon binding a S-adenosyl-L-methionine (SAM) ligand. In previous work, we characterized the conformational energy landscape of the full-length Bacillus subtilis yitJ SAM-I riboswitch as a function of Mg2+^{2+} and SAM ligand concentrations. Here, we have extended this work with measurements on a structurally similar ligand, S-adenosyl-L-homocysteine (SAH), which has, however, a much lower binding affinity. Using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling (HMM) analysis, we identified major conformations and determined their fractional populations and dynamics. At high Mg2+^{2+} concentration, FRET analysis yielded four distinct conformations, which we assigned to two terminator and two antiterminator states. In the same solvent, but with SAM added at saturating concentrations, four states persisted, although their populations, lifetimes and interconversion dynamics changed. In the presence of SAH instead of SAM, HMM revealed again four well-populated states and, in addition, a weakly populated ‘hub’ state that appears to mediate conformational transitions between three of the other states. Our data show pronounced and specific effects of the SAM and SAH ligands on the RNA conformational energy landscape. Interestingly, both SAM and SAH shifted the fractional populations toward terminator folds, but only gradually, so the effect cannot explain the switching action. Instead, we propose that the noticeably accelerated dynamics of interconversion between terminator and antiterminator states upon SAM binding may be essential for control of transcription

    Development and evaluation of a computer-based medical work assessment programme

    Get PDF
    Background: There are several ways to conduct a job task analysis in medical work environments including pencil-paper observations, interviews and questionnaires. However these methods implicate bias problems such as high inter-individual deviations and risks of misjudgement. Computer-based observation helps to reduce these problems. The aim of this paper is to give an overview of the development process of a computer-based job task analysis instrument for real-time observations to quantify the job tasks performed by physicians working in different medical settings. In addition reliability and validity data of this instrument will be demonstrated. Methods: This instrument was developed in consequential steps. First, lists comprising tasks performed by physicians in different care settings were classified. Afterwards content validity of task lists was proved. After establishing the final task categories, computer software was programmed and implemented in a mobile personal computer. At least inter-observer reliability was evaluated. Two trained observers recorded simultaneously tasks of the same physician. Results: Content validity of the task lists was confirmed by observations and experienced specialists of each medical area. Development process of the job task analysis instrument was completed successfully. Simultaneous records showed adequate interrater reliability. Conclusion: Initial results of this analysis supported the validity and reliability of this developed method for assessing physicians' working routines as well as organizational context factors. Based on results using this method, possible improvements for health professionals' work organisation can be identified

    A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway

    Get PDF
    BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17 that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth

    Different Mechanisms of Catalytic Complex Formation in Two L-Tryptophan Processing Dioxygenases

    Get PDF
    The human heme enzymes tryptophan 2,3-dioxygenase (hTDO) and indoleamine 2,3 dioxygenase (hIDO) catalyze the initial step in L-tryptophan (L-Trp) catabolism, the insertion of dioxygen into L-Trp. Overexpression of these enzymes causes depletion of L-Trp and accumulation of metabolic products, and thereby contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. Understanding the assembly of the catalytically active, ternary enzyme-substrate-ligand complexes is not yet fully resolved, but an essential prerequisite for designing efficient and selective de novo inhibitors. Evidence is mounting that the ternary complex forms by sequential binding of ligand and substrate in a specific order. In hTDO, the apolar L-Trp binds first, decreasing active-site solvation and, as a result, reducing non-productive oxidation of the heme iron by the dioxygen ligand, which may leave the substrate bound to a ferric heme iron. In hIDO, by contrast, dioxygen must first coordinate to the heme iron because a bound substrate would occlude ligand access to the heme iron, so the ternary complex can no longer form. Consequently, faster association of L-Trp at high concentrations results in substrate inhibition. Here, we summarize our present knowledge of ternary complex formation in hTDO and hIDO and relate these findings to structural peculiarities of their active sites
    • 

    corecore